Type: Article
Publication Date: 2013-07-09
Citations: 568
DOI: https://doi.org/10.1016/j.jclinepi.2013.01.013
ObjectiveExamining covariate balance is the prescribed method for determining the degree to which propensity score methods should be successful at reducing bias. This study assessed the performance of various balance measures, including a proposed balance measure based on the prognostic score (similar to a disease risk score), to determine which balance measures best correlate with bias in the treatment effect estimate.Study Design and SettingThe correlations of multiple common balance measures with bias in the treatment effect estimate produced by weighting by the odds, subclassification on the propensity score, and full matching on the propensity score were calculated. Simulated data were used, based on realistic data settings. Settings included both continuous and binary covariates and continuous covariates only.ResultsThe absolute standardized mean difference (ASMD) in prognostic scores, the mean ASMD (in covariates), and the mean t-statistic all had high correlations with bias in the effect estimate. Overall, prognostic scores displayed the highest correlations with bias of all the balance measures considered. Prognostic score measure performance was generally not affected by model misspecification, and the prognostic score measure performed well under a variety of scenarios.ConclusionResearchers should consider using prognostic score–based balance measures for assessing the performance of propensity score methods for reducing bias in nonexperimental studies.