Cavity approach to the spectral density of sparse symmetric random matrices

Type: Article

Publication Date: 2008-09-10

Citations: 136

DOI: https://doi.org/10.1103/physreve.78.031116

Abstract

The spectral density of various ensembles of sparse symmetric random matrices is analyzed using the cavity method. We consider two cases: matrices whose associated graphs are locally treelike, and sparse covariance matrices. We derive a closed set of equations from which the density of eigenvalues can be efficiently calculated. Within this approach, the Wigner semicircle law for Gaussian matrices and the Marcenko-Pastur law for covariance matrices are recovered easily. Our results are compared with numerical diagonalization, showing excellent agreement.

Locations

  • Physical Review E - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Cavity approach to the spectral density of non-Hermitian sparse matrices 2009 Tim Rogers
Isaac Pérez Castillo
+ Cavity approach to the first eigenvalue problem in a family of symmetric random sparse matrices 2010 Yoshiyuki Kabashima
Hisanao Takahashi
Osamu Watanabe
+ PDF Chat Cavity and replica methods for the spectral density of sparse symmetric random matrices 2021 V Susca
Pierpaolo Vivo
Reimer Kühn
+ PDF Chat Equivalence of replica and cavity methods for computing spectra of sparse random matrices 2011 František Slanina
+ PDF Chat Spectral density of sparse sample covariance matrices 2007 Taro Nagao
Toshiyuki Tanaka
+ Random matrix theory of singular values of rectangular complex matrices I: Exact formula of one-body distribution function in fixed-trace ensemble 2009 Satoshi Adachi
Mikito Toda
Hiroto Kubotani
+ PDF Chat Report on 2101.08029v3 2021 V Susca
Pierpaolo Vivo
Reimer Kühn
+ PDF Chat Report on 2101.08029v2 2021 V Susca
Pierpaolo Vivo
Reimer Kühn
+ PDF Chat Report on 2101.08029v2 2021 V Susca
Pierpaolo Vivo
Reimer Kühn
+ Spectra of Sparse Non-Hermitian Random Matrices 2018 Fernando L. Metz
Izaak Neri
Tim Rogers
+ PDF Chat Sparse random matrices: the eigenvalue spectrum revisited 2002 Guilhem Semerjian
Leticia F. Cugliandolo
+ Eigenvalue correlations for random matrices 1993 Taro Nagao
+ Spectral Statistics of Structured Random Matrices 2017
+ A path integral approach to sparse non-Hermitian random matrices 2023 Joseph W. Baron
+ PDF Chat Mesoscopic eigenvalue density correlations of Wigner matrices 2019 Yukun He
Antti Knowles
+ Random Matrices 2005 Mikhail Stephanov
J. J. M. Verbaarschot
Tilo Wettig
+ Random Matrices 2005 Mikhail Stephanov
J. J. M. Verbaarschot
Tilo Wettig
+ PDF Chat Spectra of sparse random matrices 2008 Reimer Kühn
+ Introduction and guide to the handbook 2015 Gernot Akemann
Jinho Baik
Philippe Di Francesco
+ PDF Chat Spectra of Sparse Non-Hermitian Random Matrices: An Analytical Solution 2012 Izaak Neri
Fernando L. Metz