On univalent functions with two preassigned values

Type: Article

Publication Date: 1971-01-01

Citations: 13

DOI: https://doi.org/10.1090/s0002-9939-1971-0283189-9

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German upper M Subscript upper M"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">M</mml:mi> </mml:mrow> <mml:mi>M</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathfrak {M}_M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the class of functions analytic and univalent in the unit disc <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta"> <mml:semantics> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:annotation encoding="application/x-tex">\Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> subject to the conditions <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis 0 right-parenthesis equals 0 comma f left-parenthesis z 0 right-parenthesis equals z 0 comma StartAbsoluteValue f left-parenthesis z right-parenthesis EndAbsoluteValue greater-than upper M comma"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mspace width="1em" /> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>z</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>z</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace width="1em" /> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(0) = 0,\quad f({z_0}) = {z_0},\quad |f(z)| &gt; M,</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="z 0 comma z 0 not-equals 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>z</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>z</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo>≠<!-- ≠ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">{z_0},{z_0} \ne 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is a fixed point of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta"> <mml:semantics> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:annotation encoding="application/x-tex">\Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 less-than-over-equals upper M less-than-over-equals normal infinity"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≦<!-- ≦ --></mml:mo> <mml:mi>M</mml:mi> <mml:mo>≦<!-- ≦ --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">1 \leqq M \leqq \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the present note, we determine by the method of circular symmetrization, the exact value of the “Koebe constant” for the class <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German upper M Subscript upper M"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">M</mml:mi> </mml:mrow> <mml:mi>M</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathfrak {M}_M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also determine Koebe sets for the class <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German upper M Subscript upper M Superscript asterisk"> <mml:semantics> <mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">M</mml:mi> </mml:mrow> <mml:mi>M</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msubsup> <mml:annotation encoding="application/x-tex">\mathfrak {M}_M^ \ast</mml:annotation> </mml:semantics> </mml:math> </inline-formula> consisting of the starlike functions, and for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="German upper M Subscript upper M Superscript alpha"> <mml:semantics> <mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">M</mml:mi> </mml:mrow> <mml:mi>M</mml:mi> <mml:mi>α<!-- α --></mml:mi> </mml:msubsup> <mml:annotation encoding="application/x-tex">\mathfrak {M}_M^\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, consisting of all functions mapping <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta"> <mml:semantics> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:annotation encoding="application/x-tex">\Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> onto domains convex in the direction <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="e Superscript i alpha"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{e^{i\alpha }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. By “Koebe set” we understand the set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper K left-parenthesis German upper M Subscript upper M Baseline right-parenthesis comma script upper K left-parenthesis German upper M Subscript upper M Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">K</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">M</mml:mi> </mml:mrow> <mml:mi>M</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">K</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">M</mml:mi> </mml:mrow> <mml:mi>M</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {K}({\mathfrak {M}_M}),\mathcal {K}({\mathfrak {M}_M})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ New criteria for univalent functions 1975 Stephan Ruscheweyh
+ PDF Chat Results on bi-univalent functions 1981 D. Styer
D. J. Wright
+ PDF Chat The Schwarzian derivative and univalent functions 1972 Shigeo Ozaki
Mamoru Nunokawa
+ PDF Chat On bounded univalent functions whose ranges contain a fixed disk 1977 Roger Barnard
+ PDF Chat On univalent polynomials 1976 J. R. Quine
+ PDF Chat On successive coefficients of univalent functions 1985 Ke Hu
+ PDF Chat On a multiplier conjecture for univalent functions 1990 V. Gruenberg
Frode Rønning
St. Ruscheweyh
+ PDF Chat On univalent functions convex in one direction 1979 A. W. Goodman
Edward B. Saff
+ PDF Chat On Bazilevič functions 1973 Ram Singh
+ PDF Chat Two new open mapping theorems for analytic multivalued functions 1992 Line Baribeau
Sarah Harbottle
+ PDF Chat One criterion for univalency 1989 Mamoru Nunokawa
Milutin Obradović
Shigeyoshi Owa
+ PDF Chat Subordination by univalent functions 1981 Sunder Singh
Ram Singh
+ PDF Chat A note on extreme points of subordination classes 1988 D. J. Hallenbeck
+ On the commutant of operators of multiplication by univalent functions 2001 B. Khani Robati
S. M. Vaezpour
+ On Univalent Functions with Three Preassigend Values 1997 Yusuf Avcı
Eligiusz J. Złotkiewicz
+ PDF Chat Extreme points of univalent functions with two fixed points 1976 Herb Silverman
+ PDF Chat New Subclasses concerning Some Analytic and Univalent Functions 2017 Maslina Darus
Shigeyoshi Owa
+ PDF Chat The univalence of an integral 1971 W. M. Causey
+ PDF Chat Extreme points of subordination families with univalent majorants 1984 D. J. Hallenbeck
+ PDF Chat 𝐶^{∞}-functions need not be bimeasurable 1971 R. B. Darst