Krull-dimension of the power series ring over a nondiscrete valuation domain is uncountable

Type: Article

Publication Date: 2013-01-08

Citations: 14

DOI: https://doi.org/10.1016/j.jalgebra.2012.05.017

Locations

  • Journal of Algebra - View

Similar Works

Action Title Year Authors
+ Krull dimension of a power series ring over a valuation domain 2018 Phan Thanh Toàn
Byung Gyun Kang
+ Krull Dimension in Power Series Ring Over an Almost Pseudo-Valuation Domain 2010 Mohamed Khalifa
Ali Benhissi
+ Completely integrally closed Prufer $v$-multiplication domains 2017 D. D. Anderson
David F. Anderson
Muhammad Zafrullah
+ Krull dimension of power series rings over a globalized pseudo-valuation domain 2009 Mi Hee Park
+ PDF Chat Completely integrally closed Prüfer <i>v</i>-multiplication domains 2017 D. D. Anderson
David F. Anderson
Muhammad Zafrullah
+ The Krull dimension of power series rings over non-SFT rings 2012 Byung Gyun Kang
K. Alan Loper
Thomas G. Lucas
Mingyu Park
Phan Thanh Toàn
+ PDF Chat SFT-stability and Krull dimension in power series rings over an almost pseudo-valuation domain 2013 Mohamed Khalifa
Ali Benhissi
+ The Krull dimension of power series rings over almost Dedekind domains 2015 Gyu Whan Chang
Byung Gyun Kang
Phan Thanh Toàn
+ Krull dimension of power series rings over non-SFT domains 2018 Phan Thanh Toàn
Byung Gyun Kang
+ PDF Chat On the Krull dimension of rings of integer-valued rational functions 2024 Mohamed Mahmoud Chems-Eddin
Badr Feryouch
Hakima Mouanis
Ali Tamoussit
+ Transcendental degree in power series rings 2018 Le Thi Ngoc Giau
Phan Thanh Toàn
+ On Fields With Only Finitely Many Maximal Subrings 2014 Alborz Azarang
+ Power series over integral domains of Krull type 2022 Le Thi Ngoc Giau
Phan Thanh Toàn
+ PDF Chat POWER SERIES RINGS OVER PRÜFER v-MULTIPLICATION DOMAINS 2016 Gyu Whan Chang
+ PDF Chat Power series rings over a Krull domain 1969 Robert Gilmer
+ Subrings of the power series ring over a principal ideal domain 2021 Gyu Whan Chang
Phan Thanh Toàn
+ A principal ideal theorem for compact sets of rank one valuation rings 2017 Bruce Olberding
+ Pseudo-dedekind rings, semistar operations, and content formulas for power series 2023 J. R. Juett
Christopher Park Mooney
+ A note on the dimension of the ring of entire functions 1969 Edgar E. Enochs
+ THE RINGS $D((\mathcal{X}))_i$ AND $D\{\{\mathcal{X}\}\}_i$ 2012 Gyu Whan Chang
Dong Yeol Oh