Sign up or log in for free. It helps support the project and unlocks personalized paper recommendations and new AI tools. .
Many interesting computational problems can be reformulated in terms of decision trees. A natural classical algorithm is to then run a random walk on the tree, starting at the root, to see if the tree contains a node $n$ level from the root. We devise a quantum-mechanical algorithm that evolves a state, initially localized at the root, through the tree. We prove that if the classical strategy succeeds in reaching level $n$ in time polynomial in $n,$ then so does the quantum algorithm. Moreover, we find examples of trees for which the classical algorithm requires time exponential in $n,$ but for which the quantum algorithm succeeds in polynomial time. The examples we have so far, however, could also be solved in polynomial time by different classical algorithms.
Login to see paper summary