Controlled Geometry via Smoothing

Type: Article

Publication Date: 1999-09-30

Citations: 22

DOI: https://doi.org/10.1007/s000140050093

Abstract

We prove that Riemannian metrics with a uniform weak norm can be smoothed to having arbitrarily high regularity.This generalizes all previous smoothing results.As a consequence we obtain a generalization of Gromov's almost flat manifold theorem.A uniform Betti number estimate is also obtained.

Locations

  • Commentarii Mathematici Helvetici - View - PDF
  • arXiv (Cornell University) - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Controlled Geometry via Smoothing 1995 Peter Petersen
Guofang Wei
Rugang Ye
+ Controlled Geometry via Smoothing 1995 Peter Petersen
Guofang Wei
Rugang Ye
+ PDF Chat Smoothing Riemannian metrics with Ricci curvature bounds 1996 Xianzhe Dai
Guofang Wei
Rugang Ye
+ Smoothing Riemannian Metrics with Ricci Curvature Bounds 1994 Xianzhe Dai
Guofang Wei
Rugang Ye
+ Smoothing metrics on closed Riemannian manifolds through the Ricci flow 2011 Yunyan Yang
+ Curvature bounds for regularized riemannian metrics 2020 Daniel Luckhardt
Jan-Bernhard Kordaß
+ Smoothing Riemannian metrics 1984 Josef Bemelmans
Min-Oo
Ernst A. Ruh
+ PDF Chat Curvature bounds via Ricci smoothing 2005 Vitali Kapovitch
+ Curvature bounds via Ricci smoothing 2004 Vitali Kapovitch
+ Riemannian Geometry 2004 Sylvestre Gallot
Dominique Hulin
Jacques Lafontaine
+ PDF Chat Smoothing metrics on closed Riemannian manifolds through the Ricci flow 2011 Yunyan Yang
+ PDF Chat Aspects of global Riemannian geometry 1999 Peter Petersen
+ PDF Chat Glued spaces and lower curvature bounds 2024 C. Ketterer
+ PDF Chat Sphere theorems with and without smoothing 2022 Jialong Deng
+ Riemannian geometry 2003
+ Riemannian geometry 2006 Jerzy Plebański
Andrzej Krasiński
+ Riemannian Geometry 2016 Peter Petersen
+ Pinching estimates of hypersurfaces by a generalized Gauss curvature flow 2023 Jinrong Hu
Ping Zhang
+ PDF Chat Local control on the geometry in 3D Ricci flow 2022 Miles Simon
Peter M. Topping
+ PDF Chat Small curvature concentration and Ricci flow smoothing 2022 Pak-Yeung Chan
Eric Chen
Man-Chun Lee