Identification of Sparse Linear Operators

Type: Article

Publication Date: 2013-10-11

Citations: 38

DOI: https://doi.org/10.1109/tit.2013.2280599

Abstract

We consider the problem of identifying a linear deterministic operator from its response to a given probing signal. For a large class of linear operators, we show that stable identifiability is possible if the total support area of the operator's spreading function satisfies <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$ \Delta \leq 1/ 2$</tex></formula> . This result holds for an arbitrary (possibly fragmented) support region of the spreading function, does not impose limitations on the total extent of the support region, and, most importantly, does not require the support region to be known prior to identification. Furthermore, we prove that stable identifiability of almost all operators is possible if <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$ \Delta &lt; 1$</tex></formula> . This result is surprising as it says that there is no penalty for not knowing the support region of the spreading function prior to identification. Algorithms that provably recover all operators with <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$ \Delta \leq 1/ 2$</tex></formula> , and almost all operators with <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$ \Delta &lt; 1$</tex></formula> are presented.

Locations

  • arXiv (Cornell University) - View - PDF
  • IEEE Transactions on Information Theory - View

Similar Works

Action Title Year Authors
+ Identification of Sparse Linear Operators 2012 Reinhard Heckel
Helmut Bölcskei
+ Identification of Sparse Linear Operators 2012 Reinhard Heckel
Helmut Bölcskei
+ PDF Chat Compressive identification of linear operators 2011 Reinhard Heckel
Helmut Bölcskei
+ Cornerstones of Sampling of Operator Theory 2015 David F. Walnut
Götz E. Pfander
T. Kailath
+ PDF Chat Cornerstones of Sampling of Operator Theory 2015 David F. Walnut
Götz E. Pfander
T. Kailath
+ Identification of Operators on Elementary Locally Compact Abelian Groups 2015 Gokhan Civan
+ Identification of stochastic operators 2013 Götz E. Pfander
Pavel Zheltov
+ Local approximation of operators 2022 H. N. Mhaskar
+ PDF Chat Sharp detection of smooth signals in a high-dimensional sparse matrix with indirect observations 2016 Cristina Butucea
Ghislaine Gayraud
+ Sampling and reconstruction of operators 2015 Götz E. Pfander
David F. Walnut
+ Sampling and reconstruction of operators 2015 Götz E. Pfander
David F. Walnut
+ PDF Chat Recipes for Stable Linear Embeddings From Hilbert Spaces to $ {\mathbb {R}}^{m}$ 2017 Gilles Puy
Mike E. Davies
RĂ©mi Gribonval
+ Linear Operators 2010 Roger L. Easton
+ PDF Chat Optimal Injectivity Conditions for Bilinear Inverse Problems with Applications to Identifiability of Deconvolution Problems 2017 Michael Kech
Felix Krahmer
+ Robust width: A characterization of uniformly stable and robust compressed sensing 2014 Jameson Cahill
Dustin G. Mixon
+ Finding a Sparse Solution of a Linear System with Applications to Coding Theory and Statistics 2010 Andrew Gordon Wilcox
+ Optimal Recovery of a Family of Operators from Inaccurate Measurements on a Compact 2023 E. O. Sivkova
+ PDF Chat Measurement design for detecting sparse signals 2011 Ramin Zahedi
Ali Pezeshki
Edwin K. P. Chong
+ PDF Chat Identification of Matrices Having a Sparse Representation 2008 Götz E. Pfander
Holger Rauhut
Jared Tanner
+ Estimation of linear operators from scattered impulse responses 2016 Jérémie Bigot
Paul Escande
Pierre Weiss