Type: Article
Publication Date: 2013-10-11
Citations: 38
DOI: https://doi.org/10.1109/tit.2013.2280599
We consider the problem of identifying a linear deterministic operator from its response to a given probing signal. For a large class of linear operators, we show that stable identifiability is possible if the total support area of the operator's spreading function satisfies <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$ \Delta \leq 1/ 2$</tex></formula> . This result holds for an arbitrary (possibly fragmented) support region of the spreading function, does not impose limitations on the total extent of the support region, and, most importantly, does not require the support region to be known prior to identification. Furthermore, we prove that stable identifiability of almost all operators is possible if <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$ \Delta < 1$</tex></formula> . This result is surprising as it says that there is no penalty for not knowing the support region of the spreading function prior to identification. Algorithms that provably recover all operators with <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$ \Delta \leq 1/ 2$</tex></formula> , and almost all operators with <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$ \Delta < 1$</tex></formula> are presented.