Horocycle flows on certain surfaces without conjugate points

Type: Article

Publication Date: 1977-01-01

Citations: 12

DOI: https://doi.org/10.1090/s0002-9947-1977-0516501-3

Abstract

We study the topological but not ergodic properties of the horocycle flow <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace h Subscript t Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>h</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {h_t}\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the unit tangent bundle <italic>SM</italic> of a complete two dimensional Riemannian manifold <italic>M</italic> without conjugate points that satisfies the “uniform Visibility” axiom. This axiom is implied by the curvature condition <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K less-than-or-slanted-equals c greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mi>c</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">K \leqslant c &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> but is weaker so that regions of positive curvature may occur. Compactness is not assumed. The method is to relate the horocycle flow to the geodesic flow for which there exist useful techniques of study. The nonwandering set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega Subscript h Baseline subset-of-or-equal-to upper S upper M"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>h</mml:mi> </mml:msub> </mml:mrow> <mml:mo>⊆<!-- ⊆ --></mml:mo> <mml:mi>S</mml:mi> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Omega _h} \subseteq SM</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace h Subscript t Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>h</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {h_t}\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is classified into four types depending upon the fundamental group of <italic>M</italic>. The extremes that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega Subscript h"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>h</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Omega _h}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a minimal set for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace h Subscript t Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>h</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {h_t}\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega Subscript h"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>h</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Omega _h}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> admit periodic orbits are related to the existence or nonexistence of compact “totally convex” sets in <italic>M</italic>. Periodic points are dense in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega Subscript h"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>h</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Omega _h}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if they exist at all. The only compact minimal sets in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega Subscript h"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>h</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Omega _h}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are periodic orbits if <italic>M</italic> is noncompact The flow <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace h Subscript t Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>h</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {h_t}\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is minimal in <italic>SM</italic> if and only if <italic>M</italic> is compact. In general <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace h Subscript t Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>h</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {h_t}\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is topologically transitive in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega Subscript h"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>h</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Omega _h}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the vectors in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega Subscript h"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>h</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Omega _h}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with dense orbits are classified. If the fundamental group of <italic>M</italic> is finitely generated and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega Subscript h Baseline equals upper S upper M"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mi>h</mml:mi> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>S</mml:mi> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Omega _h} = SM</mml:annotation> </mml:semantics> </mml:math> </inline-formula> then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace h Subscript t Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>h</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ {h_t}\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is topologically mixing in <italic>SM</italic>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Horocycle Flows on Certain Surfaces Without Conjugate Points 1977 Patrick Eberlein
+ ERGODICITY OF THE HOROCYCLE FLOW 2000 Vadim A. Kaimanovich
+ PDF Chat Dynamics of Geodesic and Horocyclic Flows 2017 Barbara Schapira
+ Horocycle flow on negative variable curvature surface is standard 2018 Adam Kanigowski
Kurt Vinhage
Daren Wei
+ Horocycle flow on negative variable curvature surface is standard 2018 Adam Kanigowski
Kurt Vinhage
Daren Wei
+ PDF Chat Ergodic properties of horospheres on manifolds without conjugate points 2022 Sergi Burniol Clotet
+ PDF Chat Equidistribution of horospheres in nonpositive curvature 2021 Sergi Burniol Clotet
+ Topological dynamics of the horocycle flow 2010 Françoise Dal’Bo
+ PDF Chat Equidistribution of horospheres in non-positive curvature 2021 Sergi Burniol Clotet
+ Unique ergodicity of horocyclic flows on nonpositively curved surfaces 2024 Sergi Burniol Clotet
+ PDF Chat Unique ergodicity of the horocycle flow of a higher genus compact surface with no conjugate points and continuous Green bundles 2023 Sergi Burniol Clotet
+ Horocycle flow on flat projective bundles: topological remarks and applications 2022 Fernando Alcalde Cuesta
Françoise Dal’Bo
+ PDF Chat Topological study of the horocycle flow : the case of geometrically infinite surfaces 2018 Alexandre Bellis
+ Geodesic and Horocyclic Trajectories 2010 Françoise Dal’Bo
+ Unique ergodicity of the horocycle flow of a higher genus compact surface with no conjugate points and continuous Green bundles 2022 Sergi Burniol Clotet
+ Invariant measures for the horocycle flow on periodic hyperbolic surfaces 2007 François Ledrappier
Omri Sarig
+ PDF Chat Geodesic flow in certain manifolds without conjugate points 1972 Patrick Eberlein
+ Ergodicity of the geodesic flow on quotient surfaces of the hyperbolic plane 2020 Isabel Gomes Gerber
+ PDF Chat Ergodicity of the geodesic flow on symmetric surfaces 2023 Michael Pandazis
Dragomir Šarić
+ Horocycle flow on geometrically finite surfaces 1990 Marc Burger