Ill-posedness for one-dimensional wave maps at the critical regularity

Type: Article

Publication Date: 2000-06-01

Citations: 23

DOI: https://doi.org/10.1353/ajm.2000.0023

Abstract

We show that the wave map equation in R 1+1 is in general ill posed in the critical space Ḣ 1/2 , and the Besov space Ḃ 1/2,1 2 . The problem is attributed to the bad behavior of the one-dimensional bilinear expression D -1 ( fDg ) in these spaces.

Locations

  • American Journal of Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • American Journal of Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • American Journal of Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ Ill-posedness for one-dimensional wave maps at the critical regularity 1998 Terence Tao
+ Wave Maps and Ill-posedness of their Cauchy Problem 2006 Piero D’Ancona
Vladimir Georgiev
+ Small data global regularity for half-wave maps 2016 Joachim Krieger
Yannick Sire
+ Small data global regularity for half-wave maps 2016 Joachim Krieger
Yannick Sire
+ Small data global regularity for half-wave maps in $n = 4$ dimensions 2019 Anna Kiesenhofer
Joachim Krieger
+ Small data global regularity for half-wave maps in $n = 4$ dimensions 2019 Anna Kiesenhofer
Joachim Krieger
+ PDF Chat Wave maps on (1+2)-dimensional curved spacetimes 2021 Cristian Gavrus
Casey Jao
Daniel Tataru
+ PDF Small data global regularity for half-wave maps 2017 Joachim Krieger
Yannick Sire
+ Ill-Posedness of the Novikov Equation in the Critical Besov Space $$B^{1}_{\infty ,1}(\mathbb {R})$$ 2024 Jinlu Li
Yanghai Yu
Weipeng Zhu
+ Ill-posedness for the gCH-mCH equation in Besov spaces 2024 Yanghai Yu
Hui Wang
+ The wave map problem. Small data critical regularity 2006 Igor Rodnianski
+ PDF Small data global regularity for half-wave maps in <i>n</i> = 4 dimensions 2021 Anna Kiesenhofer
Joachim Krieger
+ PDF Chat Sharp ill-posedness for the generalized Camassa–Holm equation in Besov spaces 2022 Jinlu Li
Yanghai Yu
Weipeng Zhu
+ Large data regularity and scattering for 2 + 1-dimensional wave maps 2016
+ Ill-posedness for the Euler–Poincaré equations in Besov spaces 2023 Min Li
Yingying Guo
+ Ill-posedness for the Euler equations in Besov spaces 2021 Jinlu Li
Yanghai Yu
Weipeng Zhu
+ Ill-posedness of the Camassa–Holm and related equations in the critical space 2018 Zihua Guo
Xingxing Liu
Luc Molinet
Zhaoyang Yin
+ Continuity of the solution map of the Euler equations in Hölder spaces and weak norm inflation in Besov spaces 2016 Gerard Misiołek
Tsuyoshi Yoneda
+ A FOURIER MULTIPLIER THEOREM ON THE BESOV-LIPSCHITZ SPACES 2008 조영금
+ Mild solutions in Besov or Morrey spaces 2016