The Temperley–Lieb algebra and its generalizations in the Potts and<i>XXZ</i>models

Type: Article

Publication Date: 2006-01-10

Citations: 36

DOI: https://doi.org/10.1088/1742-5468/2006/01/p01003

Abstract

We discuss generalizations of the Temperley–Lieb algebra in the Potts and XXZ models. These can be used to describe the addition of integrable boundary terms of different types.

Locations

  • Journal of Statistical Mechanics Theory and Experiment - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Structure of the two-boundary<i>XXZ</i>model with non-diagonal boundary terms 2006 Alexander Nichols
+ PDF Chat Temperley–Lieb<i>K</i>-matrices 2013 A. Lima-Santos
+ PDF Chat On integrable boundaries in the 2 dimensional <i>O</i>(<i>N</i>) <i>σ</i>-models 2017 Inês Aniceto
Zoltán Bajnok
Tamás Gombor
Minkyoo Kim
L. Palla
+ PDF Chat Eigenvectors of open<i>XXZ</i>and ASEP models for a class of non-diagonal boundary conditions 2010 N. Crampé
E. Ragoucy
Damien Simon
+ PDF Chat PT symmetry on the lattice: the quantum group invariant<i>XXZ</i>spin chain 2007 Christian Korff
Robert Weston
+ PDF Chat Integrable boundary conditions in the antiferromagnetic Potts model 2020 Niall F. Robertson
Michal Pawelkiewicz
Jesper Lykke Jacobsen
Hubert Saleur
+ PDF Chat The dilute Temperley–Lieb O(<i>n</i> = 1) loop model on a semi infinite strip: the ground state 2017 A. Garbali
Bernard Nienhuis
+ PDF Chat A coupled Temperley–Lieb algebra for the superintegrable chiral Potts chain 2020 Remy Adderton
Murray T. Batchelor
Paul Wedrich
+ Reduction of the XXZ model with twisted boundary conditions 2001 A. A. Belavin
S. Yu. Gubanov
+ PDF Chat Exact<i>S</i>-matrices for supersymmetric sigma models and the Potts model 2002 Paul Fendley
Nicholas Read
+ TEMPERLEY-LIEB OPERATORS AND CRITICAL <i>A-D-E</i> MODELS 1990 Paul A. Pearce
+ Integrable boundary Boltzmann weights and surface free energy inversion relations of the chiral Potts model 1998 Yu‐Kui Zhou
+ PDF Chat One-boundary Temperley–Lieb algebras in the XXZ and loop models 2005 Alexander Nichols
V. Rittenberg
Jan de Gier
+ PDF Chat Boundary Weights for Temperley–Lieb and Dilute Temperley–Lieb Models 1997 Roger E. Behrend
Paul A. Pearce
+ PDF Chat A<i>Q</i>-operator for the twisted XXX model 2006 Christian Korff
+ PDF Chat Neumann-like integrable models 2006 Galliano Valent
Hamed Ben Yahia
+ PDF Chat Temperley-Lieb lattice models arising from quantum groups 1992 Murray T. Batchelor
A Kuniba
+ Conformal invariance and the spectrum of the<i>XXZ</i>chain 1987 F C Alcaraz
Michael N. Barber
Murray T. Batchelor
+ PDF Chat Loop model with mixed boundary conditions,<i>q</i>KZ equation and alternating sign matrices 2007 Paul Zinn-Justin
+ Temperley-Lieb operator formalism for Z<sub>q</sub>symmetric models and solvable submanifolds 1988 Paul Martin
G. Launer