<i>L</i><sup><i>p</i></sup>-boundedness of the multiple Hilbert transform along a surface

Type: Article

Publication Date: 1983-09-01

Citations: 21

DOI: https://doi.org/10.2140/pjm.1983.108.221

Abstract

For an appropriate surface o in R'\ we prove that the multiple Hilbert transform along a is a bounded operator on L p (R n ), for p sufficiently close to 2. Our analysis of this singular integral operator proceeds via Fourier transform techniques-that is, on the "multiplier side"-with applications of Stein's analytic interpolation theorem and the Marcinkiewicz multiplier theorem.At the heart of our argument we have estimates of certain trigonometric integrals.CONTENTS I. Introduction 221 II.Outline of the Argument 222 III.The Worsened Multipliers: m ENz for Re(z) > 0 223 IV.The Improved Multipliers: m eNz for Re(z) < 0 232 V. Conclusion 233 Appendix 235 References 241 222 JAMES T. VANCE, JR.sufficiently close to 2 proceeds under somewhat more stringent conditions on the exponents.What is the interest in the operators H and T1 They occur in the study of certain singular convolution operators Kf=%*f.If the kernel % is odd and satisfies a one-parameter homogeneity condition-the simplest being %(tx) = t~n%(x) (x E R n , t> 0)-then H arises when one decomposes K by an appropriate variant of the Calderon-Zygmund "method of rotations", and one sees that L p inequalities for H imply the same for K.In [6], Nagel and Wainger impose a multiple-parameter homogeneity condition upon % and are led to T via the method of rotations.Again, bounds on T imply bounds on K.Moreover, in this case the kernel % may fail to be locally integrable at a set of points of positive dimension-e.g.along a line in R n ; this stands in contrast to previously studied singular convolution operators in which the kernel could be non-integrable only at the origin and at infinity.For a more detailed discussion, one should see [6] and Part I of [12].

Locations

  • Pacific Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A rough multiple Marcinkiewicz integral along continuous surfaces 2007 Huoxiong Wu
+ Real analytic multi-parameter singular Radon transforms: Necessity of the Stein-Street condition 2022 Lingxiao Zhang
+ Multi-parameter singular Radon transforms III: real analytic surfaces 2011 Elias M. Stein
Brian Street
+ Multi-parameter singular Radon transforms I: the $L^2$ theory 2010 Brian Street
+ Multi-parameter singular Radon transforms III: real analytic surfaces 2011 Elias M. Stein
Brian Street
+ Multi-parameter singular Radon transforms II: the L^p theory 2010 Elias M. Stein
Brian Street
+ Multi-parameter singular Radon transforms II: the L^p theory 2011 Elias M. Stein
Brian Street
+ Real Analytic Multi-parameter Singular Radon Transforms: necessity of the Stein-Street condition 2021 Lingxiao Zhang
+ <i>l</i>-1 summability of multiple Fourier integrals and positivity 1997 Hubert Berens
Yuan Xu
+ A Class of Multiparameter Oscillatory Singular Integral Operators: Endpoint Hardy Space Bounds 2018 Odysseas Bakas
Eric Latorre‐Crespo
Diana Cristina Rincón Martínez
James Wright
+ Multiple<i>L</i><sub><i>p</i></sub>Fourier–Feynman transforms on abstract Wiener space 2005 Jonghyeon Ahn
H. G. Kim
+ PDF Chat Estimates for the multiple singular integrals via extrapolation 2011 Meng Qu
+ PDF Chat A class of multiparameter oscillatory singular integral operators: endpoint Hardy space bounds 2019 Odysseas Bakas
Eric Latorre‐Crespo
Diana C. Rincón M.
James Wright
+ PDF Chat Multiple singular integrals and maximal operators with mixed homogeneity along compound surfaces 2016 Feng Liu
Daiq ng Zhang
+ Semicontinuity of multiple integrals onW k,p (Ω, ℜ m )(k≥1) 1995 Chengdian Zhang
Kaitai Li
+ PDF Chat Multi-parameter singular radon transforms I: The L 2 theory 2012 Brian Street
+ PDF Chat Multiple singular integrals and maximal functions along hypersurfaces 1986 Javier Duoandikoetxea
+ A Class of Multiparameter Oscillatory Singular Integral Operators: Endpoint Hardy Space Bounds 2018 Odysseas Bakas
Eric Latorre‐Crespo
Diana Cristina Rincón Martínez
James Wright
+ Approximating multiple integrals via <i>α</i>‐dense curves 2002 G. Mora
Y. Cherruault
A. Benabidallah
Yves Tourbier
+ PDF Chat Singular integrals along lacunary directions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math> 2021 Natalia Accomazzo
Francesco Di Plinio
Ioannis Parissis