Complex cycles on real algebraic models of a smooth manifold

Type: Article

Publication Date: 1992-01-01

Citations: 6

DOI: https://doi.org/10.1090/s0002-9939-1992-1093594-2

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a compact connected orientable <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Superscript normal infinity"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{C^\infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> submanifold of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbb {R}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 dimension upper M plus 1 less-than-or-equal-to n"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>dim</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>M</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">2\dim M + 1 \leq n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a subgroup of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H squared left-parenthesis upper M comma double-struck upper Z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^2}(M,\mathbb {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the quotient group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H squared left-parenthesis upper M comma double-struck upper Z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^2}(M,\mathbb {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has no torsion. Then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be approximated in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbb {R}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by a nonsingular algebraic subset <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript double-struck upper C hyphen normal a normal l normal g Superscript 2 Baseline left-parenthesis upper X comma double-struck upper Z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mml:mtext>-</mml:mtext> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> <mml:mi mathvariant="normal">g</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H_{\mathbb {C} \operatorname {- alg}}^{2}(X,\mathbb {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is isomorphic to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Here <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript double-struck upper C hyphen normal a normal l normal g Superscript 2 Baseline left-parenthesis upper X comma double-struck upper Z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mml:mtext>-</mml:mtext> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> <mml:mi mathvariant="normal">g</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>2</mml:mn> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H_{\mathbb {C}\operatorname { - alg}}^2(X,\mathbb {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes the subgroup of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H squared left-parenthesis upper X comma double-struck upper Z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^2}(X,\mathbb {Z})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generated by the cohomology classes determined by the complex algebraic hypersurfaces in a complexification of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Complex cycles on algebraic models of smooth manifolds 2009 Wojciech Kucharz
+ PDF Chat Complex Cycles on Real Algebraic Models of a Smooth Manifold 1992 J. Bochnak
W. Kucharz
+ Real groups transitive on complex flag manifolds 2001 Joseph A. Wolf
+ PDF Chat On the contact between complex manifolds and real hypersurfaces in 𝐶³ 1981 Thomas Bloom
+ Cycles on Nash algebraic models of smooth manifolds 2009 Wojciech Kucharz
+ Submanifolds of real algebraic varieties 2007 Wojciech Kucharz
+ PDF Chat A characterization of complex hypersurfaces in 𝐶^{𝑚} 1989 Marcos Dajczer
+ PDF Chat Dynamics of the Segre varieties of a real submanifold in complex space 2002 M. S. Baouendi
Peter Ebenfelt
Linda Preiss Rothschild
+ Characteristic cycles of standard sheaves associated with open orbits 2007 Mladen Božičević
+ PDF Chat The structure of rational and ruled symplectic 4-manifolds 1990 Dusa McDuff
+ Algebraic cycles of a fixed degree 2010 Wenchuan Hu
+ PDF Chat Real hypersurfaces and complex submanifolds in complex projective space 1986 Makoto Kimura
+ PDF Chat Algebraic Cycles and Approximation Theorems in Real Algebraic Geometry 1993 J. Bochnak
Wojciech Kucharz
+ Real Algebraic Manifolds 1952 John C. Nash
+ PDF Chat Simply connected spin manifolds with positive scalar curvature 1985 Tetsuro Miyazaki
+ PDF Chat Algebraic cycles and the Hodge structure of a Kuga fiber variety 1993 Basil Gordon
+ Quaternionic algebraic cycles and reality 2004 Pedro F. dos Santos
Paulo Lima‐Filho
+ Examples of non-formal closed (𝑘-1)-connected manifolds of dimensions ≥4𝑘-1 2004 Alex N. Dranishnikov
Yuli B. Rudyak
+ Knots and links of complex tangents 2017 Naohiko Kasuya
Masamichi Takase
+ PDF Chat Algebraicity of cycles on smooth manifolds 2011 Wojciech Kucharz