Adjoints of multipoint-integral boundary value problems

Type: Article

Publication Date: 1973-01-01

Citations: 10

DOI: https://doi.org/10.1090/s0002-9939-1973-0308856-1

Abstract

The dual system to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L y equals y prime plus upper P y"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mi>y</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>+</mml:mo> <mml:mi>P</mml:mi> <mml:mi>y</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">Ly = y’ + Py</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma-summation Underscript i equals 0 Overscript normal infinity Endscripts upper A Subscript i Baseline y left-parenthesis t Subscript i Baseline right-parenthesis plus integral Subscript 0 Superscript 1 Baseline upper K left-parenthesis t right-parenthesis y left-parenthesis t right-parenthesis d t equals 0"> <mml:semantics> <mml:mrow> <mml:munderover> <mml:mo movablelimits="false">∑</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi mathvariant="normal">∞</mml:mi> </mml:munderover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mi>y</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mo>∫</mml:mo> <mml:mn>0</mml:mn> <mml:mn>1</mml:mn> </mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>K</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mspace width="thickmathspace"/> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\sum \limits _{i = 0}^\infty {{A_i}y({t_i}) + \int _0^1 {K(t)y(t)\;dt = 0} }</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> is found when the setting is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Subscript n Superscript p Baseline left-parenthesis 0 comma 1 right-parenthesis comma 1 greater-than p greater-than normal infinity"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mi>n</mml:mi> <mml:mi>p</mml:mi> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">L_n^p(0,1),1 &gt; p &gt; \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Difference equations and multipoint boundary value problems 1982 Paul W. Eloe
+ PDF Chat Existence theorems for higher order boundary value problems 1975 Keith Schrader
S. Umamaheswaram
+ PDF Chat Boundary value problems for first-order differential equations 1987 L. E. Bobisud
D. O’Regan
+ PDF Chat A boundary value problem for 𝐻^{∞}(𝐷) 1977 Rotraut Goubau Cahill
+ PDF Chat On the boundary value problem 𝑢”+𝑢=𝛼𝑢⁻+𝑝(𝑡), 𝑢(0)=0=𝑢(𝜋) 1978 L. Aguinaldo
Klaus Schmitt
+ PDF Chat Limit boundary value problems of retarded functional-differential equations 1986 Shao Zhu Chen
+ PDF Chat Discontinuous semilinear differential equations and multiple valued maps 1977 Jeffrey Rauch
+ PDF Chat On the dual boundary conditions of the fourth derivative operators 1996 Peng‐Fei Yao
+ Differential Systems and Multipoint Boundary Value Problems 1982 Paul W. Eloe
L. J. Grimm
+ Adjointness in Nonadjoint Boundary Value Problems 1969 Anton Zettl
+ PDF Chat Global Structure of Positive Solutions for Some Second-Order Multipoint Boundary Value Problems 2017 Hongyu Li
Junting Zhang
+ Multipoint Boundary Value Problems 2000 Abdelkader Boucherif
Sidi Mohamed Bouguima
+ PDF Chat Minimax approximate solutions of linear boundary value problems 1979 Darrell Schmidt
Kenneth L Wiggins
+ PDF Chat “A uniqueness theorem for certain two-point boundary value problems”: A correction 1971 Ross Fraker
+ A singular integral approach to a two phase free boundary problem 2015 Simon Bortz
Steve Hofmann
+ The numerical solution of multipoint boundary value problems 1979 Ravi P. Agarwal
+ Special issue dedicated to Professor Max Gunzburger on the occasion of his 75th birthday 2022 Pavel Bochev
Marta D’Elia
Qiang Du
Steve Hou
Clayton Webster
Guannan Zhang
+ PDF Chat Lower semicontinuity, existence and regularity theorems for elliptic variational integrals of multiple valued functions 1983 Pertti Mattila
+ PDF Chat Transition time analysis in singularly perturbed boundary value problems 1995 Freddy Dumortier
Bert Smits
+ Linear self-adjoint multipoint boundary value problems and related approximation schemes 1970 Joseph W. Jerome