On the restriction of the Fourier transform to a conical surface

Type: Article

Publication Date: 1985-01-01

Citations: 73

DOI: https://doi.org/10.1090/s0002-9947-1985-0805965-8

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the surface of a circular cone in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R cubed"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {R}}^3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 less-than-or-slanted-equals p greater-than 4 slash 3"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>4</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">1 \leqslant p &gt; 4/3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 slash q equals 3 left-parenthesis 1 minus 1 slash p right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>q</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">1/q = 3(1 - 1/p)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f element-of upper L Superscript p Baseline left-parenthesis bold upper R cubed right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f \in {L^p}({{\mathbf {R}}^3})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then the Fourier transform of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> belongs to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript q Baseline left-parenthesis normal upper Gamma comma d sigma right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi>d</mml:mi> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^q}(\Gamma ,d\sigma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for a certain natural measure <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma"> <mml:semantics> <mml:mi>σ<!-- σ --></mml:mi> <mml:annotation encoding="application/x-tex">\sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Following P. Tomas we also establish bounds for restrictions of Fourier transforms to conic annuli at the endpoint <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p equals 4 slash 3"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p = 4/3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with logarithmic growth of the bound as the thickness of the annulus tends to zero.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A uniform Fourier restriction theorem for surfaces in ℝ³ 2003 Daniel M. Oberlin
+ PDF Chat The null set of the Fourier transform for a surface carried measure 1993 Li Min Sun
+ PDF Chat On the restriction of the Fourier transform to curves: endpoint results and the degenerate case 1985 Michael Christ
+ PDF Chat On the Riesz-transforms along surfaces in 𝑅³ 1985 A. El Kohen
+ 𝐿^{𝑝}→𝐿^{𝑞} regularity of Fourier integral operators with caustics 2004 Andrew Comech
+ PDF Chat On the maximal Riesz-transforms along surfaces 1988 Lung-Kee Chen
+ PDF Chat The Radon transform on 𝑆𝐿(2,𝑅)/𝑆𝑂(2,𝑅) 1986 Dorothy Wallace
Ryuji Yamaguchi
+ PDF Chat Fourier analysis on the sphere 1975 Thomas Sherman
+ Restriction theorem for the Fourier–Dunkl transform I: cone surface 2022 P Jitendra Kumar Senapati
Pradeep Boggarapu
Shyam Swarup Mondal
Hatem Mejjaoli
+ PDF Chat Oscillatory integrals and Fourier transforms of surface carried measures 1987 Michael Cowling
Giancarlo Mauceri
+ PDF Chat On Fourier integral operators 1982 A. El Kohen
+ Endpoint Fourier restriction and unrectifiability 2021 Giacomo Del Nin
Andrea Merlo
+ PDF Chat On an integral formula for closed hypersurfaces of the sphere 1972 Chorng-shi Houh
+ PDF Chat On Fourier transforms 1974 C. Nasim
+ PDF Chat On the range of the Radon 𝑑-plane transform and its dual 1991 Fulton B. Gonzalez
+ On the image of the mean transform 2022 Fadil Chabbabi
Maëva Ostermann
+ PDF Chat Functions in the Fresnel class 1987 Kun-Soo Chang
G. W. Johnson
David Skoug
+ PDF Chat On the Schwarz reflection principle 1982 J. S. Hwang
+ A Minkowski-style theorem for focal functions of compact convex reflectors 2007 Vladimir Oliker
+ PDF Chat A note on the spherical maximal operator for radial functions 1987 Mark Leckband