Global existence for semilinear Schrödinger equations in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mn>2</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math>dimensions

Type: Article

Publication Date: 2007-04-25

Citations: 2

DOI: https://doi.org/10.1016/j.jmaa.2007.03.099

Locations

  • Journal of Mathematical Analysis and Applications - View

Similar Works

Action Title Year Authors
+ Global existence for 2D nonlinear Schrödinger equations via high–low frequency decomposition method 2006 Cuihua Guo
Shangbin Cui
+ Global Well-Posedness and Polynomial Bounds for the Defocusing<i>L</i><sup>2</sup>-Critical Nonlinear Schrödinger Equation in ℝ 2008 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global Well-posedness for The Fourth-order Nonlinear Schrödinger Equations on $\mathbb{R}^{2}$ 2023 Engin Başakoğlu
Barış Yeşiloğlu
Oğuz Yılmaz
+ Global well-posedness for Schrödinger equation with derivative in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>H</mml:mi><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2011 Changxing Miao
Yifei Wu
Guixiang Xu
+ Correction to “Global Well-Posedness and Polynomial Bounds for the Defocusing<i>L</i><sup>2</sup>-Critical Nonlinear Schrödinger Equation in ℝ” 2010 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global well-posedness for the defocusing, quintic nonlinear Schrödinger equation in one dimension 2009 Benjamin Dodson
+ PDF Chat Global existence and uniqueness of Schrödinger maps in dimensions<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>d</mml:mi><mml:mo>⩾</mml:mo><mml:mn>4</mml:mn></mml:math> 2007 Ioan Bejenaru
Alexandru D. Ionescu
Carlos E. Kenig
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schrödinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ PDF Chat Global existence and scattering for a class of nonlinear fourth-order Schrödinger equation below the energy space 2018 Van Duong Dinh
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schr\"odinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global well-posedness results for the 2D-Schrödinger–Debye system 2018 Raphael Santos
+ Global well-posedness for Schr\ 2009 Changxing Miao
Yifei Wu
Guixiang Xu
+ Almost Morawetz estimates and global well-posedness for the defocusing $L^2$-critical nonlinear Schr{ö}dinger equation in higher dimensions 2009 Benjamin Dodson
+ Global existence of solutions for nonlinear schrödinger equations in one space dimension 1994 Soichiro Katayama
Yoshio Tsutsumi
+ Global Well-Posedness of the Cubic Nonlinear Schrödinger Equation on Closed Manifolds 2012 Zaher Hani
+ Global Well-posedness for the Defocusing, Quintic Nonlinear Schrödinger Equation in One Dimension for Low Regularity Data 2011 Benjamin Dodson
+ PDF Chat Improved Interaction Morawetz Inequalities for the Cubic Nonlinear Schrödinger Equation on ℝ2 2007 J. Colliander
Manoussos G. Grillakis
Nikolaos Tzirakis
+ Global Well-posedness for the Biharmonic Quintic Nonlinear Schrödinger Equation on $\mathbb{R}^2$ 2022 Engin Başakoğlu
T. Burak Gürel
Oğuz Yılmaz
+ Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds 2010 Takafumi Akahori
+ Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on $\R^2$ 2007 J. Colliander
Manoussos G. Grillakis
Nikolaos Tzirakis