A nullstellensatz for ordered fields

Type: Article

Publication Date: 1970-08-01

Citations: 56

DOI: https://doi.org/10.1007/bf02589551

Abstract

For an ordered field k, a realzero of an ideal P in the polynomial ring kwhere k is the realclosure of k, the realvariety ~e'n (p) is the set of all realzeros of P, and, as usual, J(G), for any subset G of ~(n) is the ideal of all members of k[X] that vanish all over G. Our nullstellensatz asserts: B J~CfR (P) = VP = realradical of P, R where I/ff is the set of all/(X) such that for some exponent m, some rational functions u,(X) in k(X), and positive p~ ek

Locations

  • Arkiv för matematik - View - PDF

Similar Works

Action Title Year Authors
+ Real Rings 2001 Alexander Prestel
Charles N. Delzell
+ Effective real Nullstellensatz and variants 1991 Henri Lombardi
+ A real nullstellensatz and positivstellensatz for the semipolynomials over an ordered field. 1992 Laureano González Vega
Henri Lombardi
+ Existence and uniqueness of the real closure of an ordered field without Zorn's Lemma 1991 Tomas Sander
+ PDF Chat A real nullstellensatz and positivstellensatz for the semi- polynomials over an ordered field 1993 Laureano González-Vega
Henri Lombardi
+ Real Fields 2002 Serge Lang
+ A real Nullstellensatz with multiplicity 2016 James McEnerney
+ A construction of real closed fields 2015 Yuichi Tanaka
Akito Tsuboi
+ The field of reals with a predicate for the powers of two 1985 Lou van den Dries
+ Strongly NIP almost real closed fields 2020 Lothar Sebastian Krapp
Salma Kuhlmann
Gabriel Lehéricy
+ PDF Chat A Real Nullstellensatz for free modules 2013 Jaka Cimprič
+ PDF Chat The Nullstellensatz over p-adically closed fields 1980 Moshe Jarden
Peter Roquette
+ A ganzstellensatz for semi-algebraic sets in real closed valued fields 2011 Yoav Yaffe
+ Real Analysis in Reverse 2012 James Propp
+ Real Analysis in Reverse 2012 James Propp
+ Real Analysis in Reverse 2013 James Propp
+ Real Hilbert rings and the real Nullstellensatz 1988 John Leahy
+ Exponential ideals and a Nullstellensatz 2020 Françoise Point
Nathalie Regnault
+ Exponential ideals and a Nullstellensatz 2020 Françoise Point
Nathalie Regnault
+ PDF Chat Strongly NIP almost real closed fields 2021 Lothar Sebastian Krapp
Salma Kuhlmann
Gabriel Lehéricy

Works Cited by This (2)

Action Title Year Authors
+ Lectures in Abstract Algebra 1964 Nathan Jacobson
+ Commutative Algebra 1960 Oscar Zariski
Samuel Pierre