Local-in-Space Criteria for Blowup in Shallow Water and Dispersive Rod Equations

Type: Article

Publication Date: 2014-03-08

Citations: 99

DOI: https://doi.org/10.1007/s00220-014-1958-4

Locations

  • Communications in Mathematical Physics - View
  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Blowup issues for a class of nonlinear dispersive wave equations 2014 Lorenzo Brandolese
Manuel Fernando Cortez
+ PDF Chat Wave Breaking and Propagation Speed for a Class of One-Dimensional Shallow Water Equations 2011 Zaihong Jiang
Sevdzhan Hakkaev
+ Well-posedness and Blow-up Solutions for an Integrable Nonlinearly Dispersive Model Wave Equation 2000 Yi A. Li
Peter J. Olver
+ Blowup phenomena for a new periodic nonlinearly dispersive wave equation 2010 Qiaoyi Hu
Zhaoyang Yin
+ On Solutions to a Two-Component Generalized Camassa-Holm Equation 2010 Zhengguang Guo
Yong Zhou
+ PDF Chat Local-in-space blow-up criteria for two-component nonlinear dispersive wave system 2019 Vural Bayrak
Emil Novruzov
Ä°brahim Ă–zkol
+ On uniqueness of dissipative solutions of the Camassa-Holm equation 2016 Grzegorz JamrĂłz
+ Wave Breaking and Global Existence for a Generalized Two-Component Camassa-Holm System 2010 Ruimin Chen
Yan Liu
+ Breaking Water Waves 2016 Joachim Escher
+ PDF Chat Wave breaking for shallow water models with time decaying solutions 2020 Igor Leite Freire
+ A continuous interpolation between conservative and dissipative solutions for the two-component Camassa-Holm system 2014 Katrin Grunert
Helge Holden
Xavier Raynaud
+ PDF Chat A CONTINUOUS INTERPOLATION BETWEEN CONSERVATIVE AND DISSIPATIVE SOLUTIONS FOR THE TWO-COMPONENT CAMASSA–HOLM SYSTEM 2015 Katrin Grunert
Helge Holden
Xavier Raynaud
+ Wave breaking for a shallow water equation 2004 Yong Zhou
+ A Lipschitz metric for the Camassa--Holm equation 2019 José A. Carrillo
Katrin Grunert
Helge Holden
+ Blow-up for nonlinear dissipative wave equations in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math> 2004 Grozdena Todorova
Enzo Vitillaro
+ PDF Chat A LIPSCHITZ METRIC FOR THE CAMASSA–HOLM EQUATION 2020 José A. Carrillo
Katrin Grunert
Helge Holden
+ Wave Breaking for a Nonlinear Shallow Water Equation 2022 Jianmin Zhao
Shaojie Yang
+ A note on blow-up criteria for a class of nonlinear dispersive wave equations with dissipation 2020 Xijun Deng
+ PDF Chat Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa–Holm equation 2020 Priscila Leal da Silva
Igor Leite Freire
+ Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations 2017 Emil Novruzov