The transfer and compact Lie groups

Type: Article

Publication Date: 1979-01-01

Citations: 48

DOI: https://doi.org/10.1090/s0002-9947-1979-0531973-8

Abstract

Let <italic>G</italic> be a compact Lie group with <italic>H</italic> and <italic>K</italic> arbitrary closed subgroups. Let <italic>BG, BH, BK</italic> be <italic>l</italic>-universal classifying spaces, with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="rho left-parenthesis upper H comma upper G right-parenthesis colon upper B upper H right-arrow upper B upper G"> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>H</mml:mi> <mml:mo>,</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>:</mml:mo> <mml:mi>B</mml:mi> <mml:mi>H</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>B</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\rho (H,G):BH \to BG</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the natural projection. Then transfer homomorphisms <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T left-parenthesis upper H comma upper G right-parenthesis colon h left-parenthesis upper B upper H right-parenthesis right-arrow h left-parenthesis upper B upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>H</mml:mi> <mml:mo>,</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>:</mml:mo> <mml:mi>h</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>B</mml:mi> <mml:mi>H</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>h</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>B</mml:mi> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">T(H,G):h(BH) \to h(BG)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are defined for <italic>h</italic> an arbitrary cohomology theory. One of the basic properties of the transfer for finite coverings is a double coset formula. This paper proves a double coset theorem in the above more general context, expressing <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="rho Superscript asterisk Baseline left-parenthesis upper K comma upper G right-parenthesis ring upper T left-parenthesis upper H comma upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>∘<!-- ∘ --></mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>H</mml:mi> <mml:mo>,</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\rho ^{\ast }}(K,G) \circ T(H,G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as a sum of other compositions. The main theorems were announced in the Bulletin of the American Mathematical Society in May 1977.

Locations

  • Project Euclid (Cornell University) - View - PDF
  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The transfer and compact Lie groups 1977 Mark Feshbach
+ PDF Chat A transfer for compact Lie group actions 1986 Robert Oliver
+ PDF Chat The Transfer and Compact Lie Groups 1979 Mark Feshbach
+ A transfer homomorphism for compact Lie group actions 1982 Robert Oliver
+ PDF Chat A Transfer for Compact Lie Group Actions 1986 Robert Oliver
+ Global transfer systems of abelian compact Lie groups 2022 Miguel Barrero
+ PDF Chat A split action associated with a compact transformation group 1981 Sol Schwartzman
+ PDF Chat Mapping spaces of compact Lie groups and 𝑝-adic completion 1993 David Blanc
Dietrich Notbohm
+ Transfer for compact lie groups, induced representations, and braid relations 1988 Samuel R. Evens
+ PDF Chat Compact group actions and maps into 𝐾(𝜋,1)-spaces 1985 Daniel Henry Gottlieb
Kyung B. Lee
Murad Özaydın
+ Compact Lie Groups 2005 Simone Gutt
John Rawnsley
Daniel Sternheimer
+ PDF Chat Compact Lie group action and equivariant bordism 1984 S. S. Khare
+ PDF Chat The category of generalized Lie groups 1974 Su Shing Chen
Richard W. Yoh
+ PDF Chat Weyl group actions and equivariant homotopy equivalence 1980 Katsuo Kawakubo
+ The Structure of Compact Groups 2013 Karl H. Hofmann
Sidney A. Morris
+ PDF Chat The automorphism group of a compact group action 1975 Wendell Curtis
+ Introduction to Compact Transformation Groups 1972 Glen E. Bredon
+ PDF Chat The relative Burnside module and the stable maps between classifying spaces of compact Lie groups 1995 Norihiko Minami
+ The geometry and representation theory of compact Lie groups 1980 R. Bott
+ PDF Chat Topological equivalence of flows on homogeneous spaces, and divergence of one-parameter subgroups of Lie groups 1988 Diego Benardete