Nonlinear Schrödinger Equations with Repulsive Harmonic Potential and Applications

Type: Article

Publication Date: 2003-01-01

Citations: 65

DOI: https://doi.org/10.1137/s0036141002416936

Abstract

We study the Cauchy problem for Schrödinger equations with repulsive quadratic potential and powerlike nonlinearity. The local problem is well-posed in the same space as that used when a confining harmonic potential is involved. For a defocusing nonlinearity, it is globally well-posed, and a scattering theory is available, with no long range effect for any superlinear nonlinearity. When the nonlinearity is focusing, we prove that choosing the harmonic potential sufficiently strong prevents blow-up in finite time. Thanks to quadratic potentials, we provide a method to anticipate, delay, or prevent wave collapse; this mechanism is explicit for critical nonlinearity.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • SIAM Journal on Mathematical Analysis - View

Similar Works

Action Title Year Authors
+ Nonlinear Schrodinger equations with repulsive harmonic potential and applications 2002 Rémi Carles
+ PDF Chat Energy-Critical NLS with Quadratic Potentials 2009 Rowan Killip
Monica Vişan
Xiaoyi Zhang
+ PDF Chat Nonlinear Schrödinger equation with time dependent potential 2011 Rémi Carles
+ Nonlinear Schrodinger equation with time dependent potential 2009 Rémi Carles
+ Nonlinear Schrodinger equation with time dependent potential 2009 Rémi Carles
+ On the role of quadratic oscillations in nonlinear Schrodinger equations 2002 Rémi Carles
Clotilde Fermanian Kammerer
Isabelle Gallagher
+ On the role of quadratic oscillations in nonlinear Schrödinger equations 2003 Rémi Carles
Clotilde Fermanian Kammerer
Isabelle Gallagher
+ PDF Chat On a system of nonlinear Schr\"odinger equations with potential and quadratic interaction 2024 Vicente Álvarez
Amin Esfahani
+ Non-radial scattering theory for nonlinear Schrödinger equations with potential 2020 Van Duong Dinh
+ Scattering in H1 for the intercritical NLS with an inverse-square potential 2017 Jing Lu
Changxing Miao
Jason Murphy
+ Non-radial scattering theory for nonlinear Schr\"odinger equations with potential 2020 Van Duong Dinh
+ Energy solution to Schrödinger-Poisson system in the two-dimensional whole space 2010 Satoshi Masaki
+ PDF Chat Energy Solution to a Schrödinger–Poisson System in the Two-Dimensional Whole Space 2011 Satoshi Masaki
+ PDF Chat Global well-posedness for the defocusing 3D quadratic NLS in the sharp critical space 2024 Jia Shen
Yifei Wu
+ PDF Chat LINEAR VS. NONLINEAR EFFECTS FOR NONLINEAR SCHRÖDINGER EQUATIONS WITH POTENTIAL 2005 Rémi Carles
+ PDF Chat Remarks on Nonlinear Schrödinger Equations with Harmonic Potential 2002 Rémi Carles
+ PDF Chat Well-posedness of the two-dimensional nonlinear Schrödinger equation with concentrated nonlinearity 2018 Raffaele Carlone
Michele Correggi
Lorenzo Tentarelli
+ PDF Chat Coupled nonlinear Schrödinger equations with harmonic potential 2017 H. Hezzi
M. M. Nour
Tarek Saanouni
+ On coupled nonlinear Schrodinger equations with harmonic potential 2015 Tarek Saanouni
+ On coupled nonlinear Schrodinger equations with harmonic potential 2015 Tarek Saanouni