On the Number of False Witnesses for a Composite Number

Type: Article

Publication Date: 1986-01-01

Citations: 25

DOI: https://doi.org/10.2307/2008231

Locations

  • Mathematics of Computation - View

Similar Works

Action Title Year Authors
+ On the number of false witnesses for a composite number 1987 Paul Erdös
Carl Pomerance
+ PDF Chat On the Number of Witnesses in the Miller–Rabin Primality Test 2020 Shamil Ishmukhametov
Bulat Gazinurovich Mubarakov
R. G. Rubtsova
+ On the difficulty of finding reliable witnesses 1994 W. R. Alford
Andrew Granville
Carl Pomerance
+ PDF Chat Strong pseudoprimes to base 2 2022 Kubra Nari
Enver Ozdemır
Neslihan Ayşen Özkirişçi
+ Generalized Strong Pseudoprime Tests and Applications 2000 Pedro Berrizbeitia
T. G. Berry
+ On the Number of Witnesses (a mod n) Providing A Proper Divisor of n 1995 Heiko Gerlach
+ Pseudoprimes 1995 Lindsay N. Childs
+ PDF Chat Finding strong pseudoprimes to several bases 2000 Zhenxiang Zhang
+ Roots of Unity in ℤ/mℤ 1995 Lindsay N. Childs
+ Counting composites with two strong liars 2013 Eric Bach
Andrew Shallue
+ Counting composites with two strong liars 2013 Eric Bach
Andrew Shallue
+ Carmichael Numbers 2008
+ Euler Pseudoprime Polynomials and Strong Pseudoprime Polynomials 2000 Véronique Mauduit
+ Some Remarks on Primality Testing Based on Lucas Functions 2023 Siguna Müller
+ PDF Chat Counting composites with two strong liars 2015 Eric Bach
Andrew Shallue
+ PDF Chat Tabulating Pseudoprimes and Tabulating Liars 2016 Andrew Shallue
+ PDF Chat Bad witnesses for a composite number 2024 Johnathan Djella Legnongo
Tony Ezome
Florian Luca
+ PDF Chat A one-parameter quadratic-base version of the Baillie-PSW probable prime test 2002 Zhenxiang Zhang
+ On the Number of Primality Witnesses of Composite Integers 2021 B. G. Mubarakov
+ On the number of primality witnesses of composite integers 2021 Bulat Gazinorovich Mubarakov