No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices

Type: Article

Publication Date: 1998-01-01

Citations: 514

DOI: https://doi.org/10.1214/aop/1022855421

Abstract

Let $B_n = (1/N)T_n^{1/2}X_n X_n^* T_n^{1/2}$, where $X_n$ is $n \times N$ with i.i.d. complex standardized entries having finite fourth moment and $T_n^{1/2}$ is a Hermitian square root of the nonnegative definite Hermitian matrix $T_n$. It is known that, as $n \to \infty$, if $n/N$ converges to a positive number and the empirical distribution of the eigenvalues of $T_n$ converges to a proper probability distribution, then the empirical distribution of the eigenvalues of $B_n$ converges a.s. to a nonrandom limit. In this paper we prove that, under certain conditions on the eigenvalues of $T_n$, for any closed interval outside the support of the limit, with probability 1 there will be no eigenvalues in this interval for all $n$ sufficiently large.

Locations

  • The Annals of Probability - View - PDF

Similar Works

Action Title Year Authors
+ No Eigenvalues Outside the Support of the Limiting Spectral Distribution of Large Dimensional noncentral Sample Covariance Matrices 2023 Zhidong Bai
Hu Jiang
Jack W. Silverstein
Huanchao Zhou
+ NO EIGENVALUES OUTSIDE THE SUPPORT OF THE LIMITING SPECTRAL DISTRIBUTION OF INFORMATION-PLUS-NOISE TYPE MATRICES 2011 Zhidong Bai
Jack W. Silverstein
+ No eigenvalues outside the limiting support of the spectral distribution of general sample covariance matrices 2018 Yanqing Yin
+ No eigenvalues outside the support of the limiting spectral distribution of large dimensional noncentral sample covariance matrices 2024 Zhidong Bai
Jiang Hu
Jack W. Silverstein
Huanchao Zhou
+ Exact Separation of Eigenvalues of Large Dimensional Noncentral Sample Covariance Matrices 2023 Zhidong Bai
Jiang Hu
Jack W. Silverstein
Huanchao Zhou
+ The limiting spectral distribution of large dimensional general information-plus-noise type matrices 2022 Huanchao Zhou
Zhidong Bai
Jiang Hu
+ PDF Chat Exact Separation of Eigenvalues of Large Dimensional Sample Covariance Matrices 1999 Zhidong Bai
Jack W. Silverstein
+ PDF Chat CLT for linear spectral statistics of large-dimensional sample covariance matrices 2004 Zhidong Bai
Jack W. Silverstein
+ No eigenvalues outside the support of the limiting spectral distribution of quaternion sample covariance matrices 2019 Huiqin Li
+ The limiting spectral distribution function of large dimensional random matrices of sample covariance type 1998 Sang Il Choi
+ Analysis of the limiting spectral measure of large random matrices of the separable covariance type 2013 Romain Couillet
Walid Hachem
+ Analysis of the limiting spectral measure of large random matrices of the separable covariance type 2013 Romain Couillet
Walid Hachem
+ PDF Chat Analysis of the limiting spectral measure of large random matrices of the separable covariance type 2013 Romain Couillet
Walid Hachem
+ PDF Chat Unbounded largest eigenvalue of large sample covariance matrices: Asymptotics, fluctuations and applications 2019 Florence Merlevède
Jamal Najım
Peng Tian
+ The limiting spectral distribution of the product of the Wigner matrix and a nonnegative definite matrix 2010 Zhidong Bai
L. X. Zhang
+ PDF Chat Analysis of the limiting spectral measure of large random matrices of the separable covariance type 2014 Romain Couillet
Walid Hachem
+ No outliers in the spectrum of the product of independent non-Hermitian random matrices with independent entries 2014 Yuriy Nemish
+ Limit Theorems for the Eigenvalues of Empirical Covariance Matrices 1995 Vyacheslav L. Girko
+ No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix 2008 Debashis Paul
Jack W. Silverstein
+ PDF Chat Spectral Measure of Heavy Tailed Band and Covariance Random Matrices 2009 Serban T. Belinschi
Amir Dembo
Alice Guionnet