A stability property of a class of Banach spaces not containing a complemented copy of 𝑙₁

Type: Article

Publication Date: 1982-01-01

Citations: 18

DOI: https://doi.org/10.1090/s0002-9939-1982-0633274-1

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a Banach space and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a compact Hausdorff space. The space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C left-parenthesis upper K comma upper E right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C(K,E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> will stand for the Banach space of all continuous <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-valued functions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> equipped with the sup norm. It is shown that the space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> does not contain a complemented subspace isomorphic to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="l 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>l</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{l_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C left-parenthesis upper K comma upper E right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo>,</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C(K,E)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has the same property.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat 𝐶(𝐾,𝐸) contains a complemented copy of 𝑐₀ 1984 Pilar Cembranos
+ Vector measure Banach spaces containing a complemented copy of 𝑐₀ 2004 A. Picón
Cándido Piñeiro
+ PDF Chat A characterization of Banach spaces containing 𝑐₀ 1994 Haskell P. Rosenthal
+ Banach-Stone theorem for Banach lattice valued continuous functions 2007 Zafer Ercan
Süleyman Önal
+ PDF Chat Property (𝐻) in Lebesgue-Bochner function spaces 1985 Bor-Luh Lin
Pei-Kee Lin
+ PDF Chat Banach spaces in which every compact lies inside the range of a vector measure 1992 Cándido Piñeiro
Luis Rodríguez–Piazza
+ 𝐾(ℓ_{𝑝},ℓ_{𝑞}) is a Lipschitz retract of 𝐵(ℓ_{𝑝},ℓ_{𝑞}) 2022 Lixin Cheng
Wuyi He
Sijie Luo
+ PDF Chat Stability of isometries on Banach spaces 1983 Julian Gevirtz
+ A note on the stability of nonsurjective 𝜖-isometries of Banach spaces 2020 Lixin Cheng
Yunbai Dong
+ PDF Chat An example in the space of bounded operators from 𝐶(𝑋) to 𝐶(𝑌) 1973 Samuel Kaplan
+ Stability of the fixed point property in Hilbert spaces 2005 Eva M. Mazcuñán-Navarro
+ A stronger form of Banach-Stone theorem to 𝐶₀(𝐾,𝑋) spaces including the cases 𝑋=𝑙_{𝑝}², 1&lt;𝑝&lt;∞ 2023 Elói Medina Galego
+ PDF Chat A bounded difference property for classes of Banach-valued functions 1974 Wilbur P. Veith
+ PDF Chat Complemented copies of 𝑐₀ in 𝐿^{∞}(𝜇,𝐸) 1994 Santiago Díaz-Madrigal
+ PDF Chat Embedding of a Banach algebra 𝐴 into 𝐿(𝐴’) 1996 Etienne Desquith
+ PDF Chat Quotients of Banach spaces of cotype 𝑞 1982 Gilles Pisier
+ PDF Chat On a theorem of a Pełczyński 1974 John L. B. Gamlen
+ Fixed points of nonexpansive mappings in spaces of continuous functions 2005 T. Domínguez Benavides
María A. Japón
+ A wider nonlinear extension of Banach-Stone theorem to 𝐶₀(𝐾,𝑋) spaces which is optimal for 𝑋=ℓ_{𝑝}, 2≤𝑝&lt;∞ 2022 Elói Medina Galego
André Porto da Silva
+ A condition for spectral continuity of positive elements 2008 S. Mouton