Selberg's orthogonality conjecture for automorphic L -functions

Type: Article

Publication Date: 2005-07-31

Citations: 26

DOI: https://doi.org/10.1353/ajm.2005.0029

Abstract

Let π and π' be automorphic irreducible unitary cuspidal representations of [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="01i" /] and [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="02i" /], respectively. Assume that either π or π' is self contragredient. Under the Ramanujan conjecture on π and π', we deduce a prime number theorem for L ( s , π × [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="03i" /]), which can be used to asymptotically describe whether π' ≅ π, or π' ≅ π ⊗ |det(·)| i τ0 for some nonzero τ0 ∈ [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="04i" /], or π' ≅ π ⊗|det(·)| it for any t ∈ [inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="05i" /]. As a consequence, we prove the Selberg orthogonality conjecture, in a more precise form, for automorphic L -functions L ( s , π) and L ( s , π'), under the Ramanujan conjecture. When m = m ' = 2 and π and π' are representations corresponding to holomorphic cusp forms, our results are unconditional.

Locations

  • American Journal of Mathematics - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ On the Selberg orthogonality for automorphic L-functions 2010 Muharem Avdispahiand
+ The prime number theorem and Hypothesis H with lower-order terms 2014 Timothy Gillespie
Yangbo Ye
+ PDF Chat Weighted Selberg orthogonality and uniqueness of factorization of automorphic L-functions 2005 Jianya Liu
Yangbo Ye
+ PDF Chat Zeros of Automorphic L-Functions and Noncyclic Base Change 2006 Jianya Liu
Yangbo Ye
+ A Prime Number Theorem for Rankin-Selberg L-functions over Number fields 2009 Tim Gillespie
Guanghua Ji
+ PDF Chat The number of coefficients of automorphic L-functions for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="italic">GL</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msub></mml:math> of same signs 2014 Jianya Liu
Jie Wu
+ PDF Chat On a Rankin-Selberg <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math>-Function over Different Fields 2014 Tim Gillespie
+ PDF Chat Root Number Equidistribution for Self-Dual Automorphic Representations on $GL_N$ 2024 Rahul Dalal
Mathilde Gerbelli-Gauthier
+ An Integral Representation of Standard Automorphic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi></mml:math>Functions for Unitary Groups 2007 Yujun Qin
+ A weak form of beyond endoscopic decomposition for the stable trace formula of odd orthogonal groups 2016 Chung Pang Mok
+ A weak form of beyond endoscopic decomposition for the stable trace formula of odd orthogonal groups 2016 Chung Pang Mok
+ Zero correlation with lower-order terms for automorphic L-functions 2015 Timothy Gillespie
Yangbo Ye
+ Strong orthogonality between the Möbius function, additive characters and the coefficients of the L-functions of degree three 2019 Ratnadeep Acharya
+ PDF Chat Perron’s Formula and the Prime Number Theorem for Automorphic L-Functions 2007 Jianya Liu
Yangbo Ye
+ Isolating Rankin-Selberg lifts 2015 Jayce R. Getz
Jamie Klassen
+ Non-existence of Siegel zeros for cuspidal functorial products on 𝐺𝐿(2)×𝐺𝐿(3) 2022 Wenzhi Luo
+ Langlands Program and Ramanujan Conjecture: a survey 2018 Luis Lomelí
+ Langlands Program and Ramanujan Conjecture: a survey 2018 Luis Lomelí
+ An Asymptotic Orthogonality Relation for ${\rm GL}(n, \mathbb R)$ 2022 Dorian Goldfeld
Eric Stade
Michael Woodbury
+ Integral moments of automorphic L-functions 2015 Hengcai Tang
Xuanxuan Xiao