Bifurcations of multiple relaxation oscillations in polynomial Liénard equations

Type: Article

Publication Date: 2010-11-03

Citations: 14

DOI: https://doi.org/10.1090/s0002-9939-2010-10610-x

View Chat PDF

Abstract

In this paper, we prove the presence of limit cycles of given multiplicity, together with a complete unfolding, in families of (singularly perturbed) polynomial Liénard equations. The obtained limit cycles are relaxation oscillations. Both classical Liénard equations and generalized Liénard equations are treated.

Locations

  • Proceedings of the American Mathematical Society - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat More limit cycles than expected in Liénard equations 2007 Freddy Dumortier
Daniel Panazzolo
Robert Roussarie
+ On the independent perturbation parameters and the number of limit cycles of a type of Liénard system 2018 Junmin Yang
Pei Yu
Xianbo Sun
+ Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems 2013 Jianhe Shen
Maoan Han
+ Bifurcation in Polynomial Liénard Systems 1997
+ Small-amplitude limit cycles of polynomial Liénard systems 2013 Maoan Han
Yun Tian
Pei Yu
+ Limit cycles for discontinuous generalized Lienard polynomial differential equations 2013 Jaume Llibre
Ana Cristina Mereu
+ ON THE NUMBER OF LIMIT CYCLES FOR A QUINTIC LIÉNARD SYSTEM UNDER POLYNOMIAL PERTURBATIONS 2019 Linlin Li
Junmin Yang
+ On the number of limit cycles of polynomial Lienard systems 2011 Maoan Han
Valery G. Romanovski
+ On the number of limit cycles of polynomial Liénard systems 2012 Maoan Han
Valery G. Romanovski
+ A survey on the limit cycles of the generalized polynomial Liénard differential equations 2009 Jaume Llibre
Alberto Cabada
Eduardo Liz
Juan J. Nieto
+ Small amplitude limit cycles for the polynomial Liénard system 2008 Maciej Borodzik
Henryk Żołądek
+ PDF Chat Global Bifurcation Analysis of Generalized Liénard Polynomial Dynamical System 2023 Valery A. Gaiko
+ PDF Chat Limit Cycles of a Class of Generalized Liénard Polynomial Equations 2014 Jaume Llibre
Abdenacer Makhlouf
+ Limit cycles and bifurcation from a separatrix for a polynomial Lienard system in the plane. 1997 Gabriele Villari
Massimo Villarini
+ Limit cycles of polynomial Liénard systems via the averaging method 2018 Juanrong Shi
Wang Wei-xia
Xiang Zhang
+ Limit cycles for a class of generalized Liénard polynomial differential systems via averaging theory 2021 Abdelkrim Kina
Aziza Berbache
Ahmed Bendjeddou
+ PDF Chat Quartic Liénard Equations with Linear Damping 2018 Renato Huzak
+ Limit cycle bifurcations of a general Liénard system with polynomial restoring and damping functions 2012 Valery A. Gaiko
+ PDF Chat Fixed and moving limit cycles for Liénard equations 2019 Armengol Gasull
Marco Sabatini
+ Limit cycles for a class of discontinuous generalized Liénard polynomial differential equations 2013 Jaume Llibre
Ana Cristina Mereu

Cited by (12)

Action Title Year Authors
+ Planar Canards with Transcritical Intersections 2014 Peter De Maesschalck
+ PDF Chat Normal hyperbolicity and unbounded critical manifolds 2014 Christian Kuehn
+ Asymptotic lower bounds on Hilbert numbers using canard cycles 2019 M.J. Álvarez
B. Coll
Peter De Maesschalck
R. Prohens
+ Existence and uniqueness of limit cycles for generalized φ-Laplacian Liénard equations 2016 Set Pérez-González
Joan Torregrosa
Pedro J. Torres
+ PDF Chat Studies of the Petrov Module for a Family of Generalized Liénard Integrable Systems 2017 Lucile Mégret
+ Center Conditions and Bifurcation of Limit Cycles Created from a Class of Second-Order ODEs 2019 Yusen Wu
Hongwei Li
Ahmed Alsaedi
+ Slow–fast Bogdanov–Takens bifurcations 2010 Peter De Maesschalck
Freddy Dumortier
+ Bifurcations of Critical Periods for a Class of Quintic Liénard Equation 2020 Zhiheng Yu
Lingling Liu
+ Conditions for polynomial Liénard centers 2015 Zhiheng Yu
WeiNian Zhang
+ Overview of Known Results 2021 Peter De Maesschalck
Freddy Dumortier
Robert Roussarie
+ Classical Liénard equations of degree <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>n</mml:mi><mml:mo>⩾</mml:mo><mml:mn>6</mml:mn></mml:math> can have <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mo stretchy="false">[</mml:mo><mml:mfrac><mml:mrow><mml:mi>n</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:mfrac><mml:mo stretchy="false">]</mml:mo><mml:mo>+</mml:… 2010 Peter De Maesschalck
Freddy Dumortier
+ Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems 2013 Jianhe Shen
Maoan Han