Resonant decompositions and the I-method for cubic nonlinear Schrodinger on R^2

Type: Preprint

Publication Date: 2007-01-01

Citations: 12

DOI: https://doi.org/10.48550/arxiv.0704.2730

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View
  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\mathbb{R}^2$ 2008 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao
+ PDF Bilinear Strichartz estimates and applications to the cubic nonlinear Schrödinger equation in two space dimensions 2008 Hideo Takaoka
+ Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on $\R^2$ 2007 J. Colliander
Manoussos G. Grillakis
Nikolaos Tzirakis
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schr\"odinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schrödinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Scattering of the three-dimensional cubic nonlinear Schrödinger equation with partial harmonic potentials 2021 Xing Cheng
Chang‐Yu Guo
Zihua Guo
Xian Liao
Jia Shen
+ The cubic fourth-order Schrodinger equation 2008 Benoît Pausader
+ PDF Chat Improved Interaction Morawetz Inequalities for the Cubic Nonlinear Schrödinger Equation on ℝ2 2007 J. Colliander
Manoussos G. Grillakis
Nikolaos Tzirakis
+ Correction to “Global Well-Posedness and Polynomial Bounds for the Defocusing<i>L</i><sup>2</sup>-Critical Nonlinear Schrödinger Equation in ℝ” 2010 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Improved interaction Morawetz inequalities for the cubic nonlinear Schr 2007 J. Colliander
Manoussos G. Grillakis
Nikolaos Tzirakis
+ PDF Global well-posedness and scattering for the defocusing cubic Schrödinger equation on waveguide ℝ2 × 𝕋2 2019 Zehua Zhao
+ Global well - posedness for the defocusing, cubic, nonlinear wave equation in three dimensions for radial initial in $\dot{H}^{s} \times \dot{H}^{s - 1}$, $s &gt; \frac{1}{2}$ 2015 Benjamin Dodson
+ Energy transfer for solutions to the nonlinear Schrödinger equation on irrational tori 2021 Alexander Hrabski
Yulin Pan
Gigliola Staffilani
Bobby L. Wilson
+ Global Well-Posedness and Polynomial Bounds for the Defocusing<i>L</i><sup>2</sup>-Critical Nonlinear Schrödinger Equation in ℝ 2008 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global well - posedness for the defocusing, cubic, nonlinear wave equation in three dimensions for radial initial in $\dot{H}^{s} \times \dot{H}^{s - 1}$, $s > \frac{1}{2}$ 2015 Benjamin Dodson
+ Energy transfer for solutions to the nonlinear Schr\"odinger equation on irrational tori 2021 Alexander Hrabski
Yulin Pan
Gigliola Staffilani
Bobby Wilson
+ Global Well-Posedness for the Defocusing, Cubic, Nonlinear Wave Equation in Three Dimensions for Radial Initial Data in .<i>H</i> <i>s</i> × .<i>H</i> <i>s</i>-1, <i>s</i>&amp;gt; 1/2 2018 Benjamin Dodson
+ Global well-posedness for Schrödinger equation with derivative in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>H</mml:mi><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2011 Changxing Miao
Yifei Wu
Guixiang Xu
+ Bootstrapped Morawetz Estimates And Resonant Decomposition For Low Regularity Global Solutions Of Cubic NLS On R^{2} 2008 Jim Colliander
Tristan Roy
+ Global well-posedness for the defocusing, cubic, nonlinear Schrodinger equation when n = 3 via a linear-nonlinear decomposition 2009 Benjamin Dodson

Works That Cite This (10)

Action Title Year Authors
+ Global well-posedness for the mass-critical nonlinear Schrödinger equation on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="double-struck">T</mml:mi></mml:math> 2011 Yongsheng Li
Yifei Wu
Guixiang Xu
+ PDF Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm 2011 M. Keel
Tristan Roy
Terence Tao
+ PDF Chat Global well-posedness for the Benjamin equation in low regularity 2010 Yongsheng Li
Yifei Wu
+ Global well-posedness for Schrödinger equation with derivative in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>H</mml:mi><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2011 Changxing Miao
Yifei Wu
Guixiang Xu
+ Global well-posedness and scattering for the defocusing \( H^{\frac{1}{2}} \)-subcritical Hartree equation in \( R^{d} \) 2009 Changxing Miao
Guixiang Xu
Lifeng Zhao
+ Well-posedness of the ADMB–KdV equation in Sobolev spaces of negative indices 2014 Amin Esfahani
Reza Pourgholi
+ Global rough solutions to the critical generalized KdV equation 2010 Luiz Gustavo Farah
+ PDF Chat GLOBAL ATTRACTOR FOR WEAKLY DAMPED, FORCED mKdV EQUATION BELOW ENERGY SPACE 2019 Prashant Goyal
+ Global analysis of the defocusing cubic wave equation in dimension 3 2008 Los Angeles
+ The ADMB-KdV equation in a time-weighted space 2013 Amin Esfahani
Reza Pourgholi