Unique topological characterization of braided magnetic fields

Type: Article

Publication Date: 2013-01-01

Citations: 28

DOI: https://doi.org/10.1063/1.4773903

Abstract

We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.

Locations

  • Durham Research Online (Durham University) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Physics of Plasmas - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A complete topological invariant for braided magnetic fields 2014 A. R. Yeates
G. Hornig
+ Introduction to Field Line Helicity 2023 A. R. Yeates
Mitchell A. Berger
+ Field line winding of braided vector fields in tubular subdomains 2019 Christopher Prior
A. R. Yeates
+ On self and mutual winding helicity 2021 Simon Candelaresi
G. Hornig
David MacTaggart
Radostin D. Simitev
+ On self and mutual winding helicity 2021 Simon Candelaresi
G. Hornig
David MacTaggart
Radostin D. Simitev
+ PDF Chat Magnetic winding: what is it and what is it good for? 2020 Christopher Prior
David MacTaggart
+ A topological approach to magnetic nulls 2023 Ben Y. Israeli
Christopher Berg Smiet
+ PDF Chat Photospheric Injection of Magnetic Helicity: Connectivity-Based Flux Density Method 2013 K. Dalmasse
É. Pariat
P. Démoulin
G. Aulanier
+ PDF Chat Reconstructing Highly-twisted Magnetic Fields 2020 V. M. Demcsak
M. S. Wheatland
A. Mastrano
Kai Yang
+ PDF Chat ON THE HELICITY OF OPEN MAGNETIC FIELDS 2014 Christopher Prior
A. R. Yeates
+ PDF Chat Evolution of field line helicity during magnetic reconnection 2015 A. J. B. Russell
A. R. Yeates
G. Hornig
A. L. Wilmot‐Smith
+ PDF Chat Topological constraints on magnetic field relaxation 2012 Simon Candelaresi
Axel Brandenburg
+ PDF Chat Magnetic Geometry and the Confinement of Electrically Conducting Plasmas 2000 L. D. Faddeev
Antti J. Niemi
+ PDF Chat A problem of Ulam about magnetic fields generated by knotted wires 2017 Alberto Enciso
Daniel Peralta‐Salas
+ Topological theory of physical fields 2019 Amir Jafari
Ethan T. Vishniac
+ Topological theory of physical fields 2019 Amir Homayoun Jafari‬
Ethan T. Vishniac
+ Topological theory of physical fields 2020 Amir Jafari
Ethan T. Vishniac
+ PDF Chat Weaving Knotted Vector Fields with Tunable Helicity 2016 Hridesh Kedia
David Foster
Mark R. Dennis
William T. M. Irvine
+ PDF Chat Generalized Gauss maps and integrals for three-component links: Toward higher helicities for magnetic fields and fluid flows 2013 Dennis DeTurck
Herman Gluck
Rafał Komendarczyk
Paul Melvin
Clayton Shonkwiler
David Shea Vela–Vick
+ Electrodynamics and Topology 2003 Patrick Cornille