On the semiprimitivity of skew polynomial rings

Type: Article

Publication Date: 1993-06-01

Citations: 10

DOI: https://doi.org/10.1017/s0013091500018319

Abstract

Let R be a left Noetherian ring with the ascending chain condition on right annihilators, let α be a ring monomorphism of R and δ an α-derivation of R . We prove that, if R is semiprime or α-prime, then R [ X ;α, δ] is semiprimitive (and left Goldie), and that J ( R [ X ;α]) equals N ( R )[ X ;α].

Locations

  • Proceedings of the Edinburgh Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ On derivations and commutativity in semiprime rings 1995 Qing Deng
Howard E. Bell
+ PDF Chat ON (α, ẞ)-DERIVATIONS OF SEMIPRIME RINGS 2003 Muhammad Anwar Chaudhry
A. B. Thaheem
+ PDF Chat A NOTE ON α-DERIVATIONS ON SEMIPRIME RINGS 2001 A. B. Thaheem
M. Samman
+ Left Derivations and Strong Commutativity Preserving Maps on Semiprime $Γ$-Rings 2012 Xiaowei Xu
Jing Ma
Yuan Zhou
+ Strong Commutativity Preserving Skew Derivations in Semiprime Rings 2016 Vincenzo De Filippis
Nadeem ur Rehman
Arif Raza
+ PDF Chat ON α-DERIVATIONS OF PRIME AND SEMIPRIME RINGS 2005 Joso Vukman
+ A theorem on derivations in semiprime rings 1995 Quing Deng
+ On generalized (α, β)-derivations of semiprime rings 2011 Faisal Ali
Muhammad Anwar Chaudhry
+ Goldie conditions for Ore extensions over semiprime rings 2004 André Leroy
Jerzy Matczuk
+ PDF Chat ON (α,β )-DERIVATIONS OF SEMIPRIME RINGS, II 2004 Muhammad Anwar Chaudhry
A. B. Thaheem
+ On Skew Derivations in Semiprime Rings 2012 Cheng-Kai Liu
+ On Generalized Derivations of Semiprime Rings 2010 Faisal Ali
Muhammad Anwar Chaudhry
+ A note on (alpha)-derivations on semiprime rings 2001 A. B. Thaheem
M. Samman
+ Partial Skew Polynomial Rings and Goldie Rings 2008 Wagner Cortes
Miguel Ferrero
Hidetoshi Marubayashi
+ On a pair of (α, β)-derivations of semiprime rings 2005 Muhammad Anwar Chaudhry
A. B. Thaheem
+ A Commutativity Condition for Semiprime Rings with Generalized Skew Derivations 2024 Francesco Rania
+ Strong Commutativity-preserving Generalized Derivations on Semiprime Rings 2008 Jing Jing
Ma
Xiao
Wei
Xu
Feng
Wen
Niu
+ A note on multiplicative (generalized)-derivations and left ideals in semiprime rings 2020 Basudeb Dhara
Sukhendu Kar
Swarup Kuila
+ PDF Chat Free actions on semiprime rings 2008 Muhammad Anwar Chaudhry
M. Samman
+ PDF Chat Remarks on derivations on semiprime rings 1991 M. N. Daif
Howard E. Bell