L p estimates for the biest II. The Fourier case

Type: Article

Publication Date: 2004-02-17

Citations: 56

DOI: https://doi.org/10.1007/s00208-003-0508-8

Abstract

We prove L p estimates (Theorem 1.2) for the ''biest'', a trilinear multiplier operator with singular symbol. The methods used are based on the treatment of the Walsh analogue of the biest in the prequel [13] of this paper, but with additional technicalities due to the fact that in the Fourier model one cannot obtain perfect localization in both space and frequency.

Locations

  • Mathematische Annalen - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • Mathematische Annalen - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ PDF Chat L p estimates for the biest I. The Walsh case 2004 Camil Muscalu
Terence Tao
Christoph Thiele
+ $L^p$ estimates for the biest II. The Fourier case 2001 Camil Muscalu
Terence Tao
Christoph Thiele
+ $L^p$ estimates for the biest I. The Walsh case 2001 Camil Muscalu
Terence Tao
Christoph Thiele
+ The Bi-Carleson operator 2004 Camil Muscalu
Terence Tao
Christoph Thiele
+ The Bi-Carleson operator 2004 Camil Muscalu
Terence Tao
Christoph Thiele
+ Iterated trilinear Fourier integrals with arbitrary symbols 2013 Joeun Jung
+ Iterated trilinear Fourier integrals with arbitrary symbols 2013 Joeun Jung
+ On the bi-carleson operator I. The Walsh case 2002 Camil Muscalu
Terence Tao
Christoph Thiele
+ Iterated trilinear Fourier integrals with arbitrary symbols 2017 Joeun Jung
+ L^p Estimates for Semi-Degenerate Simplex Multipliers 2016 Robert Kesler
+ PDF Boundedness of Bilinear Operators with nonsmooth symbols 2000 John E. Gilbert
Andrea R. Nahmod
+ The Hörmander multiplier theorem I: The Linear Case 2016 Loukas Grafakos
Danqing He
Petr HonzĂ­k
Hanh Nguyen
+ PDF Bilinear operators with non-smooth symbol, I 2001 John E. Gilbert
Andrea R. Nahmod
+ L^p estimates for a singular integral operator motivated by Calder\'on's second commutator 2011 Eyvindur A. Palsson
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math>estimates for a singular integral operator motivated by CalderĂłnÊŒs second commutator 2011 Eyvindur A. Palsson
+ L p estimates for bi-parameter and bilinear Fourier integral operators 2016 Qing Hong
Lu Zhang
+ L^p estimates for a singular integral operator motivated by CalderĂłn's second commutator 2011 Eyvindur A. Palsson
+ PDF Chat Uniform bounds for bilinear symbols with linear K-quasiconformally embedded singularity 2024 Marco Fraccaroli
Olli Saari
Christoph Thiele
+ Sharp weighted estimates for strong-sparse operators 2021 Gevorg Mnatsakanyan
+ PDF Chat Sharp weighted estimates for strong-sparse operators 2021 Gevorg Mnatsakanyan