Computing 𝜋(𝑥): the Meissel, Lehmer, Lagarias, Miller, Odlyzko method

Type: Article

Publication Date: 1996-01-01

Citations: 41

DOI: https://doi.org/10.1090/s0025-5718-96-00674-6

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\pi (x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the number of primes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="less-than-or-equal-to x"> <mml:semantics> <mml:mrow> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>x</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\le x</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our aim in this paper is to present some refinements of a combinatorial method for computing single values of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\pi (x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, initiated by the German astronomer Meissel in 1870, extended and simplified by Lehmer in 1959, and improved in 1985 by Lagarias, Miller and Odlyzko. We show that it is possible to compute <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\pi (x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O left-parenthesis StartFraction x Superscript 2 slash 3 Baseline Over log squared x EndFraction right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mfrac> <mml:msup> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mrow> <mml:msup> <mml:mi>log</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>x</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">O(\frac {x^{2/3}} {\log ^2x})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> time and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O left-parenthesis x Superscript 1 slash 3 Baseline log cubed x log log x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mi>log</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>x</mml:mi> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">O(x^{1/3}\log ^3x\log \log x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> space. The algorithm has been implemented and used to compute <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi left-parenthesis 10 Superscript 18 Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>π<!-- π --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>18</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\pi (10^{18})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Mathematics of Computation - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ PDF Chat Computing 𝜋(𝑥): the Meissel-Lehmer method 1985 Jeffrey C. Lagarias
Victor S. Miller
Andrew Odlyzko
+ PDF Chat Counting sums of two squares: the Meissel-Lehmer method 1986 Peter Shiu
+ PDF Chat A method of tabulating the number-theoretic function 𝑔(𝑘) 1992 Renate Scheidler
Hugh C. Williams
+ PDF Chat Computing 𝜓(𝑥) 1998 Marc Deléglise
Joël Rivat
+ On the greatest prime factor of (𝑎𝑏+1)(𝑎𝑐+1) 2002 Pietro Corvaja
Umberto Zannier
+ PDF Chat Some results for 𝑘!±1 and 2⋅3⋅5⋯𝑝±1 1972 Alan Borning
+ PDF Chat A formula for 𝐸_{𝑊}𝑒𝑥𝑝(-2⁻¹𝑎²‖𝑥+𝑦‖²₂) 1987 Tzuu-Shuh Chiang
Yun shyong Chow
Yuh-Jia Lee
+ On a problem of Chen and Liu concerning the prime power factorization of 𝑛! 2013 Johannes F. Morgenbesser
Thomas Stoll
+ PDF Chat Primes of the form 𝑝=1+𝑚²+𝑛² in short intervals 1998 Jie Wu
+ Bounds for the first several prime character nonresidues 2016 Paul Pollack
+ A generalization of Miller’s primality theorem 2008 Pedro Berrizbeitia
Aurora Olivieri
+ PDF Chat A new function associated with the prime factors of (ⁿ_{𝑘}) 1974 Earl F. Ecklund
P. Erdős
J. L. Selfridge
+ PDF Chat On 𝑘-free integers with small prime factors 1975 D. G. Hazlewood
+ Approximating the number of integers without large prime factors 2005 Koji Suzuki
+ On integers of the form 𝑘2ⁿ+1 2000 Yong-Gao Chen
+ PDF Chat A 𝑝+1 method of factoring 1982 Hywel C Williams
+ PDF Chat A note on 4/𝑛=1/𝑥+1/𝑦+1/𝑧 1982 Xun Qian Yang
+ PDF Chat A new algorithm to search for small nonzero |𝑥³-𝑦²| values 2009 Ismael Jiménez Calvo
Javier Herranz
G. Sáez
+ PDF Chat On the Collatz 3𝑛+1 algorithm 1981 Lynn E. Garner
+ Finding 𝐶₃-strong pseudoprimes 2004 Zhenxiang Zhang