Shimura subgroups of Jacobians of Shimura curves

Type: Article

Publication Date: 1993-01-01

Citations: 8

DOI: https://doi.org/10.1090/s0002-9939-1993-1145947-2

Abstract

Given an indefinite quaternion algebra of reduced discriminant <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding="application/x-tex">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and an integer <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> relatively prime to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper D"> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding="application/x-tex">D</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, one can construct Shimura curves <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S h 0 left-parenthesis upper N comma upper D right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Sh</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\operatorname {Sh} _0}(N,D)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S h 1 left-parenthesis upper N comma upper D right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Sh</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\operatorname {Sh} _1}(N,D)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which are analogues of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X 0 left-parenthesis upper N right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{X_0}(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X 1 left-parenthesis upper N right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>X</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{X_1}(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The natural morphism <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S h 1 left-parenthesis upper N comma upper D right-parenthesis right-arrow upper S h 0 left-parenthesis upper N comma upper D right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Sh</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Sh</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\operatorname {Sh} _1}(N,D) \to {\operatorname {Sh} _0}(N,D)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> induces a morphism <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper J 0 left-parenthesis upper N comma upper D right-parenthesis right-arrow upper J 1 left-parenthesis upper N comma upper D right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>J</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>J</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{J_0}(N,D) \to {J_1}(N,D)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> between the Jacobians. We compute the kernel <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma-summation left-parenthesis upper N comma upper D right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\sum (N,D)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of this latter map, which is finite.

Locations

  • Proceedings of the American Mathematical Society - View - PDF
  • DR-NTU (Nanyang Technological University) - View - PDF

Similar Works

Action Title Year Authors
+ Hasse principle violations for Atkin-Lehner twists of Shimura curves 2017 Pete L. Clark
James Stankewicz
+ PDF Chat Shimura Subgroups of Jacobians of Shimura Curves 1993 San Ling
+ Rational torsion points on Jacobians of Shimura curves 2015 Hwajong Yoo
+ Rational torsion points on Jacobians of Shimura curves 2015 Hwajong Yoo
+ PDF Chat The spinor genus of quaternion orders 1975 Gordon L. Nipp
+ The 𝑎-numbers of Jacobians of Suzuki curves 2013 Holley Friedlander
Derek Garton
Beth Malmskog
Rachel Pries
Colin Weir
+ Mumford curves covering 𝑝-adic Shimura curves and their fundamental domains 2017 Laia Amorós
Piermarco Milione
+ Degrees of Parametrizations of Elliptic Curves by Shimura Curves 2001 Shuzo Takahashi
+ Factoring newparts of Jacobians of certain modular curves 2010 M. Ram Murty
Kaneenika Sinha
+ PDF Chat Rational torsion points on Jacobians of Shimura curves 2016 Hwajong Yoo
+ Conjugates of shimura varieties 2006 J. S. Milne
K.-Y. Shih
+ Arithmetic of Shimura curves 2010 Shou-Wu Zhang
+ PDF Chat Jordan decompositions of cocenters of reductive 𝑝-adic groups 2019 Xuhua He
Ju-Lee Kim
+ Powers of the Modular Curve as Shimura Varieties 2022
+ PDF Chat Reduction modulo 𝔓 of Shimura curves 1981 Yasuo Morita
+ Independence of ℓ of monodromy groups 2004 CheeWhye Chin
+ Quaternion algebras and quadratic forms towards Shimura curves 2013 Montserrat Alsina Aubach
+ On the geometric Mumford-Tate conjecture for subvarieties of Shimura varieties 2019 Gregorio Baldi
+ On Shimura curves in the Schottky locus 2009 Stefan Kukulies
+ Shimura correspondence for level <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>p</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> and the central values of L-series 2006 Ariel Pacetti
Gonzalo Tornaría