A Jordan Sobolev extension domain

Type: Article

Publication Date: 2010-03-01

Citations: 6

DOI: https://doi.org/10.5186/aasfm.2010.3519

Abstract

Let 1 < q < 2. In this paper, we construct a Jordan domain G q ⊂ R 2 such that G q ∈ Ext p if and only if 1 ≤ p < q, and R 2 \ G q ∈ Ext s if and only if q/(q -1) < s ≤ ∞.Theorem 1.1.For each 1 < q < 2, there exists a Jordan domain G q ⊂ R

Locations

  • Annales Academiae Scientiarum Fennicae Mathematica - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ A geometric characterization of planar Sobolev extension domains 2015 Pekka Koskela
Tapio Rajala
Yi Ru‐Ya Zhang
+ A geometric characterization of planar Sobolev extension domains 2015 Pekka Koskela
Tapio Rajala
Yi Ru‐Ya Zhang
+ Green Functions and Conditioned Gauge Theorem for a 2-Dimensional Domain 1988 Zhongxin Zhao
+ PDF Chat Sobolev Versus Homogeneous Sobolev Extension 2024 Pekka Koskela
Riddhi Mishra
Zheng Zhu
+ PDF Chat A 3G-Theorem for Jordan Domains in R<sup>2</sup> 2004 Lotfi Riahi
+ The volume of the boundary of a Sobolev $(p,q)$-extension domain 2020 Pekka Koskela
Alexander Ukhlov
Zheng Zhu
+ Product of extension domains is still an extension domain 2018 Pekka Koskela
Zheng Zhu
+ PDF Chat Product of extension domains is still an extension domain 2020 Pekka Koskela
Zheng Zhu
+ Duality of capacities and Sobolev extendability in the plane 2020 Yi Ru‐Ya Zhang
+ Duality of capacities and Sobolev extendability in the plane 2020 Yi Ru‐Ya Zhang
+ A geometric characterization of planar Sobolev extension domains (Long Version) 2015 Pekka Koskela
Tapio Rajala
Yi Ru‐Ya Zhang
+ On Sobolev extension domains in $R^n$ 2009 Pavel Shvartsman
+ The Extension Spaces of Nonsymmetric Classical Domains 1991 Hung-Hsi Wu
+ A Generalization of Jordan's Inequality and an Application ABSTRACT | FULL TEXT 2011 Zh.-H. Huo
Da‐Wei Niu
Jian Cao
Fangjie Qi
Feng Qi
+ A Sobolev Extension Domain That is Not Uniform 2006 Shanshuang Yang
+ PDF Chat Extension of functions from Sobolev spaces 1983 Vladimir Maz’ya
+ PDF Chat A generalization of the function of Jordan 1961 O. M. Fomenko
+ PDF Chat Correction to: Jordan domains with a rectifiable arc in their boundary 2020 Vasiliki Liontou
Vassili Nestoridis
+ AN EXTENSION OF THE JORDAN CURVE THEOREM 1953 Tatsuo Homma
+ Sobolev homeomorphic extensions 2021 Aleksis Koski
Jani Onninen