The Gaussian curvature of Alexandrov surfaces

Type: Article

Publication Date: 1998-10-01

Citations: 25

DOI: https://doi.org/10.2969/jmsj/05040859

Abstract

We generalize the Gauss-Bonnet theorem for Alexandrov surfaces and show that we can define the Gaussian curvature almost everywhere on an Alexandrov surface.\S 0. Introduction.A classical theorem in the theory of surfaces states that if $\Delta$ is a sufficiently small geodesic triangle bounding a disk on a smooth Riemannian 2-manifold $M$ , and if $A,$ $B$ and $C$ are the inner angles of $\Delta$ , then (0.1)$\int_{\Delta}GdM=A+B+C-\pi$ ,

Locations

  • Journal of the Mathematical Society of Japan - View - PDF

Similar Works

Action Title Year Authors
+ The Gauss–Bonnet theorem and the geometry of surfaces 2019 Son Lam Ho
+ Gaussian Curvature of Curved Surface and Gauss-Bonnet Formula 2016 Xing Jia-sheng
Xiaoyuan Yang
Luo Xiu-Hua
+ The Gauss-Bonnet theorem 2012 Marco Abate
Francesca Tovena
+ The Gauss–Bonnet Theorem 2018 L. M. Woodward
John Bolton
+ Gaussian curvature in codimension > 1 2013 Daniel Álvarez‐Gavela
+ Gaussian curvature in codimension > 1 2013 Daniel Álvarez‐Gavela
+ The Gaussian curvature of minimal surfaces and Heinz' constant 1998 R. R. Hall
+ Minimal surfaces of constant Gaussian curvature in a pseudo-Riemannian sphere 1992 V. P. Gorokh
+ Surfaces of the Constant Gaussian Curvature 2015 С. Н. Кривошапко
В. Н. Иванов
+ Gauss-Bonnet theorem in sub-Riemannian Heisenberg space $H^1$ 2012 José M. M. Veloso
Marcos M. Diniz
+ Basics of the Differential Geometry of Surfaces 2001 Jean Gallier
+ Geodesic curvature and geodesics 2018
+ Surfaces with prescribed Gauss curvature 2000 Sagun Chanillo
Michael K.‐H. Kiessling
+ Gauss Inner Curvature of Surfaces 1997 Krzysztof Maurin
+ Gaussian Curvature and the Gauss Map 2001 Andrew Pressley
+ Surfaces of Gaussian Curvature Zero 2014 Erik W. Grafarend
Rey-Jer You
Rainer Syffus
+ Surfaces of Gaussian curvature zero 2006
+ PDF Chat Intrinsic curvature of curves and surfaces and a Gauss–Bonnet theorem in the Heisenberg group 2016 Zoltán M. Balogh
Jeremy T. Tyson
Eugenio Vecchi
+ Sub-Riemannian curvature and a Gauss-Bonnet theorem in the Heisenberg group 2016 Zoltán M. Balogh
Jeremy T. Tyson
Eugenio Vecchi
+ PDF Chat The Brioschi Formula for the Gaussian Curvature 2024 Lee-Peng Teo