The universality of words 𝑥^{𝑟}𝑦^{𝑠} in alternating groups

Type: Article

Publication Date: 1986-01-01

Citations: 4

DOI: https://doi.org/10.1090/s0002-9939-1986-0813802-7

Abstract

If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r comma s"> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mi>s</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">r,s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are nonzero integers and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding="application/x-tex">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the largest squarefree divisor of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r s"> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mi>s</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">rs</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then for every element <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="z"> <mml:semantics> <mml:mi>z</mml:mi> <mml:annotation encoding="application/x-tex">z</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the alternating group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the equation <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="z equals x Superscript r Baseline y Superscript s"> <mml:semantics> <mml:mrow> <mml:mi>z</mml:mi> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>r</mml:mi> </mml:msup> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>y</mml:mi> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">z = {x^r}{y^s}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has a solution with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x comma y element-of upper A Subscript n Baseline"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">x,y \in {A_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, provided that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-slanted-equals 5"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geqslant 5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-slanted-equals left-parenthesis 5 slash 2 right-parenthesis log m"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>5</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>m</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geqslant (5/2)\log m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The bound <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis 5 slash 2 right-parenthesis log m"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>5</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mi>log</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>m</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">(5/2)\log m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> improves the bound <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="4 m plus 1"> <mml:semantics> <mml:mrow> <mml:mn>4</mml:mn> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">4m + 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of Droste. If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-slanted-equals 29"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>29</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geqslant 29</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the coefficient <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="5 slash 2"> <mml:semantics> <mml:mrow> <mml:mn>5</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">5/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be replaced by 2; however, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="5 slash 2"> <mml:semantics> <mml:mrow> <mml:mn>5</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">5/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> cannot be replaced by 1 even for all <italic>large</italic> <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the universality of words for the alternating groups 1986 Manfred Droste
+ On groups having a 𝑝-constant character 2020 Silvio Dolfi
Emanuele Pacifici
Lucía Sanus
+ PDF Chat Groups of finite weight 1981 A. H. Rhemtulla
+ Blocks with 𝑝-power character degrees 2005 Gabriel Navarro
Geoffrey R. Robinson
+ PDF Chat 𝑄(𝑡) and 𝑄((𝑡))-admissibility of groups of odd order 1995 Burton Fein
Murray Schacher
+ PDF Chat Sets of uniqueness for a certain class ℳ_{𝜖} on the dyadic group 1983 Kaoru Yoneda
+ PDF Chat When is a 𝑝-block a 𝑞-block? 1997 Gabriel Navarro
Wolfgang M. Willems
+ PDF Chat On 𝑘-free sequences of integers 1972 Samuel S. Wagstaff
+ PDF Chat On the existence of 𝜅-free abelian groups 1975 Paul C. Eklof
+ Characters of 𝜋’-degree 2019 Eugenio Giannelli
A. A. Schaeffer Fry
Carolina Vallejo
+ PDF Chat Weinbaum’s conjecture on unique subwords of nonperiodic words 1992 Andrew J. Duncan
James Howie
+ PDF Chat An analogue to Glauberman’s 𝑍𝐽-theorem 1990 Bernd Stellmacher
+ On locally finite 𝑝-groups satisfying an Engel condition 2002 Aliréza Abdollahi
Gunnar Traustason
+ Groups with few 𝑝’-character degrees in the principal block 2020 Eugenio Giannelli
Noelia Rizo
Benjamin Sambale
A. A. Schaeffer Fry
+ PDF Chat 𝑁𝐾₁ of finite groups 1987 Dennis R. Harmon
+ Specker’s theorem for Nöbeling’s group 2001 Andreas Blass
+ PDF Chat Number fields with prescribed 𝑙-class groups 1975 Frank Gerth
+ PDF Chat Infinite cyclic verbal subgroups of relatively free groups 1996 A. M. Storozhev
+ PDF Chat On groups of finite weight 1976 Phil Kutzko
+ Group-theoretic generalisations of vertex and edge connectivities 2020 Yinan Li
Youming Qiao