Cartan subalgebras of simple Lie algebras

Type: Article

Publication Date: 1977-01-01

Citations: 27

DOI: https://doi.org/10.1090/s0002-9947-1977-0480650-9

Abstract

Let <italic>L</italic> be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than 7"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">p &gt; 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <italic>H</italic> be a Cartan subalgebra of <italic>L</italic>, let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L equals upper H plus normal upper Sigma Subscript gamma element-of normal upper Gamma Baseline upper L Subscript gamma"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>=</mml:mo> <mml:mi>H</mml:mi> <mml:mo>+</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Σ<!-- Σ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>γ<!-- γ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>γ<!-- γ --></mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">L = H + {\Sigma _{\gamma \in \Gamma }}{L_\gamma }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the Cartan decomposition of <italic>L</italic> with respect to <italic>H</italic>, and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H overbar"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>H</mml:mi> <mml:mo stretchy="false">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">\bar H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the restricted subalgebra of Der <italic>L</italic> generated by ad <italic>H</italic>. Let <italic>T</italic> denote the maximal torus of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H overbar"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>H</mml:mi> <mml:mo stretchy="false">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">\bar H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <italic>I</italic> denote the nil radical of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H overbar"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>H</mml:mi> <mml:mo stretchy="false">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">\bar H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H overbar equals upper T plus upper I"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>H</mml:mi> <mml:mo stretchy="false">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>T</mml:mi> <mml:mo>+</mml:mo> <mml:mi>I</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\bar H = T + I</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Consequently, each <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="gamma element-of normal upper Gamma"> <mml:semantics> <mml:mrow> <mml:mi>γ<!-- γ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\gamma \in \Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a linear function on <italic>H</italic>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Simple Lie algebras of toral rank one 1978 Robert Lee Wilson
+ PDF Chat Cartan subspaces of symmetric Lie algebras 1976 James Lepowsky
Gin McCollum
+ PDF Chat Simple Lie algebras of characteristic 𝑝 with dependent roots 1990 Georgia Benkart
J. Marshall Osborn
+ PDF Chat Cartan Subalgebras of Simple Lie Algebras 1977 Robert Lee Wilson
+ On Cartan subalgebras and Cartan subspaces of nonsymmetric pairs of Lie algebras 2013 Boris Širola
+ PDF Chat Multiplicity of the adjoint representation in simple quotients of the enveloping algebra of a simple Lie algebra 1989 Anthony Joseph
+ PDF Chat Poisson commutative subalgebras associated with a Cartan subalgebra 2024 Oksana Yakimova
+ PDF Chat Cartan subalgebras and tori in prime characteristic 1975 Robert Lee Wilson
+ PDF Chat On subalgebras of simple Lie algebras of characteristic 𝑝&gt;0 1984 Boris Weisfeiler
+ PDF Chat Isomorphism of simple Lie algebras 1973 Bruce Allison
+ Cartan Subalgebras of Locally Finite Lie Algebras 2008 M Khursheed Alam
+ PDF Chat A new simple Lie algebra of characteristic three 1973 Marguerite Frank
+ Cartan subalgebras 2000 Willem A. de Graaf
+ Cartan Subalgebras 1987 Jean-Pierre Serre
+ CARTAN SUBALGEBRAS 1975 Zhe-Xian Wan
+ PDF Chat On the left ideal in the universal enveloping algebra of a Lie group generated by a complex Lie subalgebra 1994 Juan Tirao
+ A Generalization of Wilson′s Theorem on Cartan Subalgebras of Simple Lie Algebras 1994 Alexander Premet
+ Computing Cartan Subalgebras of Lie Algebras 1996 Willem A. de Graaf
Gábor Ivanyos
Lajos R�nyai
+ Computing Cartan subalgebras of Lie algebras 1996 Willem A. de Graaf
Gábor Ivanyos
Lajos Rónyai
+ PDF Chat Cartan subalgebras of a Lie algebra and its ideals 1970 David J. Winter