On the restriction of the Fourier transform to curves: endpoint results and the degenerate case

Type: Article

Publication Date: 1985-01-01

Citations: 128

DOI: https://doi.org/10.1090/s0002-9947-1985-0766216-6

Abstract

For smooth curves <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with certain curvature properties it is shown that the composition of the Fourier transform in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> followed by restriction to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> defines a bounded operator from <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p Baseline left-parenthesis bold upper R Superscript n Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}({{\mathbf {R}}^n})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript q Baseline left-parenthesis normal upper Gamma right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^q}(\Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for certain <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p comma q"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">p,q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The curvature hypotheses are the weakest under which this could hold, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is optimal for a range of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q"> <mml:semantics> <mml:mi>q</mml:mi> <mml:annotation encoding="application/x-tex">q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the proofs the problem is reduced to the estimation of certain multilinear operators generalizing fractional integrals, and they are treated by means of rearrangement inequalities and interpolation between simple endpoint estimates.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A uniform estimate for Fourier restriction to simple curves 2009 Daniel M. Oberlin
+ Convolution and restriction estimates for measures on curves in ℝ² 2007 Daniel M. Oberlin
+ A uniform Fourier restriction theorem for surfaces in ℝ³ 2003 Daniel M. Oberlin
+ PDF Chat Decay rates of Fourier transforms of curves 1988 Bernard Marshall
+ PDF Chat On the restriction of the Fourier transform to a conical surface 1985 Bartolome Barcelo Taberner
+ A Fourier restriction theorem for degenerate curves 2007 박종국
+ PDF Chat Oscillatory integrals and Fourier transforms of surface carried measures 1987 Michael Cowling
Giancarlo Mauceri
+ Fourier restriction estimates for space curves 2018 박정원
+ PDF Chat On the vanishing rate of smooth CR functions 2014 Giuseppe Della Sala
Bernhard Lamel
+ PDF Chat A note on Fourier restriction for curves in ℝ³ 2003 Jong-Guk Bak
Daniel M. Oberlin
+ PDF Chat On the Restriction of The Fourier Transform to Curves: Endpoint Results and The Degenerate Case 1985 Michael Christ
+ PDF Chat Weak approximation for low degree Del Pezzo surfaces 2012 Chenyang Xu
+ PDF Chat Curvature and the backward shift operators 1984 Gadadhar Misra
+ Classes of singular integrals along curves and surfaces 1999 Andreas Seeger
Stephen Wainger
James Wright
Sarah Ziesler
+ 𝐿^{𝑝} bounds for oscillatory hyper-Hilbert transform along curves 2008 Jiecheng Chen
Dashan Fan
Meng Wang
Zhu Xiang-rong
+ On the characterization of the kernel of the geodesic X-ray transform 2006 Eduardo Chappa
+ PDF Chat Restrictions of Fourier transforms to flat curves in $\mathbf{R}$ 1994 Jong-Guk Bak
+ PDF Chat Harmonic functions having no tangential limits 1990 Hiroaki Aikawa
+ Singular Integrals and Fourier Multipliers on Infinite Lipschitz Curves 2019 Tao Qian
Pengtao Li
+ PDF Chat On the Riesz-transforms along surfaces in 𝑅³ 1985 A. El Kohen