On diophantine monoids and their class groups

Type: Article

Publication Date: 2002-11-01

Citations: 29

DOI: https://doi.org/10.2140/pjm.2002.207.125

Abstract

A Diophantine monoid S is a monoid which consists of the set of solutions in nonnegative integers to a system of linear Diophantine equations.Given a Diophantine monoid S, we explore its algebraic properties in terms of its defining integer matrix A. If d r (S) and d c (S) denote respectively the minimal number of rows and minimal number of columns of a defining matrix A for S, then we prove in Section 3 that d r (S) = rank Cl(S) and d c (S) = rank Cl(S)+rank Q(S) where Cl(S) represents the divisor class group of S and Q(S) the quotient group of S. The proof relies on the characteristic properties of the so-called essential states of S, which are developed in Section 2. We close in Section 4 by offering a characterization of factorial Diophantine monoids and an algorithm which determines if a Diophantine monoid is halffactorial.

Locations

  • Pacific Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ The Theorem of Minkowski for Polyhedral Monoids and Aggregated Linear Diophantine Systems 1978 Achim Bachem
+ Monoids determined by a homogenous linear diophantine equation and the half-factorial property 2000 Scott T. Chapman
Ulrich Krause
Eberhard Oeljeklaus
+ On the Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mi>c</… 2012 S. Barry Cooper
Heung Yeung Lam
+ Inside factorial monoids and the Cale monoid of a linear Diophantine equation 2019 Pedro A. García-Sánchez
Ulrich Krause
D. Llena
+ On the Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>N</mml:mi><mml:msup><mml:mrow><mml:mi>X</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>Y… 2014 Eva G. Goedhart
Helen G. Grundman
+ Monoid structure on square matrices over a PID 2012 Kyoji Saito
+ PDF Chat On the additive structure of algebraic valuations of polynomial semirings 2022 Jyrko Correa-Morris
Felix Gotti
+ PDF Chat ON THE DIVISOR-CLASS GROUP OF MONADIC SUBMONOIDS OF RINGS OF INTEGER-VALUED POLYNOMIALS 2017 Andreas Reinhart
+ On the system of Diophantine equations <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>r</mml:mi></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:… 2015 Takafumi Miyazaki
Florian Luca
+ PDF Chat The Diophantine Equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msup><mml:mrow><mml:mn>8</mml:mn></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi>y</mml:mi></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>z</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> 2015 Qi Lan
Xiaoxue Li
+ On partitions of finite vector spaces of low dimension over <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si153.gif" display="inline" overflow="scroll"><mml:mi>G</mml:mi><mml:mi>F</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> 2008 Saad I. El‐Zanati
George F. Seelinger
Papa A. Sissokho
Lawrence E. Spence
Charles Vanden Eynden
+ On representations of monoids as monoids of polynomials 1972 Pavel Křivka
+ On the additive structure of algebraic valuations of cyclic free semirings 2020 Jyrko Correa-Morris
Felix Gotti
+ A survey on monogenic orders 2011 Jan-Hendrik Evertse
+ PDF Chat The Exponential Diophantine Equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msup><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mi>y</mml:mi></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>c</mml:mi></mml:mrow><mml:mrow><mml:mi>z</mml:mi></mml:mrow></mml:msup></mml:math> 2014 Yahui Yu
Xiaoxue Li
+ On the divisor-class group of monadic submonoids of rings of integer-valued polynomials 2016 Andreas Reinhart
+ Factorization Theory in Commutative Monoids 2019 Alfred Geroldinger
Qinghai Zhong
+ On Delta Sets and their Realizable Subsets in Krull Monoids with Cyclic Class Groups 2016 Scott T. Chapman
Felix Gotti
Roberto Pelayo
+ On Delta Sets and their Realizable Subsets in Krull Monoids with Cyclic Class Groups 2016 Scott T. Chapman
Felix Gotti
Roberto Pelayo
+ On the divisor-class group of monadic submonoids of rings of integer-valued polynomials 2016 Andreas Reinhart