Two remarks on the generalised Korteweg de-Vries equation

Type: Article

Publication Date: 2007-01-01

Citations: 32

DOI: https://doi.org/10.3934/dcds.2007.18.1

Abstract

We make two observations concerning the generalised Korteweg de Vriesequation $u_t + $uxxx$ = \mu ( |u|^{p-1} u )_x$. Firstly we give a scaling argument that shows, roughly speaking,that any quantitative scattering result for $L^2$-critical equation ($p=5$) automatically implies an analogous scatteringresult for the $L^2$-critical nonlinear Schrödinger equation $iu_t + $uxx$ = \mu |u|^4 u$. Secondly, in thedefocusing case $\mu > 0$ we present a new dispersion estimate which asserts, roughly speaking, that energy moves to the left faster than the mass, and hence strongly localised soliton-like behaviour at a fixed scale cannot persist for arbitrarily longtimes.

Locations

  • Discrete and Continuous Dynamical Systems - View - PDF
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • Discrete and Continuous Dynamical Systems - View - PDF
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • Discrete and Continuous Dynamical Systems - View - PDF
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ Two remarks on the generalised Korteweg de-Vries equation 2006 Terence Tao
+ Scattering for the quartic generalised Korteweg-de Vries equation 2006 Terence Tao
+ On the mass-critical generalized KdV equation 2011 Rowan Killip
Soonsik Kwon
Shuanglin Shao
Monica Vişan
+ On the mass-critical generalized KdV equation 2009 Rowan Killip
Soonsik Kwon
Shuanglin Shao
Monica Vişan
+ PDF Blow up for the critical generalized Korteweg–de Vries equation. I: Dynamics near the soliton 2014 Yvan Martel
Frank Merle
Pierre Raphaël
+ Self-similar blow-up solutions in the generalised Korteweg-de Vries equation: spectral analysis, normal form and asymptotics 2024 S. Jonathan Chapman
Michail E. Kavousanakis
E. G. Charalampidis
Ioannis G. Kevrekidis
P. G. Kevrekidis
+ A Liouville theorem for the critical generalized Korteweg–de Vries equation 2000 Yvan Martel
Frank Merle
+ Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation 1991 Francis Michael Christ
Michael I. Weinstein
+ PDF Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg–de Vries equation 2017 Satoshi Masaki
Jun-ichi Segata
+ On mass concentration for the critical generalized Korteweg–de Vries equation 2015 Brian Pigott
+ PDF Large data wave operator for the generalized Korteweg-de Vries equations 2006 Raphaël Côte
+ Instability of solitons - revisited, I: the critical generalized KdV equation 2017 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ Instability of solitons - revisited, I: the critical generalized KdV equation 2017 Luiz Gustavo Farah
Justin Holmer
Svetlana Roudenko
+ PDF Chat Dispersive blow-up for a coupled Schr\"odinger-fifth order KdV system 2024 Eddye Bustamante
José Jiménez Urrea
Jorge Mejía
+ Large Time Asymptotics of Solutions to the Generalized Korteweg–de Vries Equation 1998 Nakao Hayashi
Pavel I. Naumkin
+ Scattering for the quartic generalised Korteweg–de Vries equation 2006 Terence Tao
+ Self-similar blow-up solutions in the generalized Korteweg-de Vries equation: Spectral analysis, normal form and asymptotics 2023 S. Jonathan Chapman
Michail E. Kavousanakis
E. G. Charalampidis
Ioannis G. Kevrekidis
P. G. Kevrekidis
+ Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation 2016 Satoshi Masaki
Jun‐ichi Segata
+ Remarks on the Korteweg-de Vries equation 1976 Jean–Claude Saut
Roger Témam
+ Solitonic asymptotics for the Korteweg-de Vries equation in the small dispersion limit 2009 Tom Claeys
Тамара Грава