Nonlinear Elliptic Equations with Singular Terms and Combined Nonlinearities

Type: Article

Publication Date: 2011-08-08

Citations: 25

DOI: https://doi.org/10.1007/s00023-011-0129-9

Abstract

We consider nonlinear elliptic Dirichlet problems with a singular term, a concave (i.e., (p − 1)-sublinear) term and a Carathéodory perturbation. We study the cases where the Carathéodory perturbation is (p − 1)-linear and (p − 1)-superlinear near +∞. Using variational techniques based on the critical point theory together with truncation arguments and the method of upper and lower solutions, we show that if the L ∞-coefficient of the concave term is small enough, the problem has at least two nontrivial smooth solutions.

Locations

  • Annales Henri Poincaré - View - PDF
  • Homo Politicus (Academy of Humanities and Economics in Lodz) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A bifurcation-type theorem for singular nonlinear elliptic equations 2015 Νικόλαος Παπαγεωργίου
George Smyrlis
+ Dirichlet problems with singular and superlinear terms 2015 Sergiu Aizicovici
Nikolaos S. Papageorgiou
Vasile Staicu
+ PDF Chat p-Laplace equations with singular terms and p-superlinear perturbations 2012 Sergiu Aizicovici
Nikolaos S. Papageorgiou
Vasile Staicu
+ PDF Chat Singular equations with variable exponents and concave-convex nonlinearities 2022 Leszek Gasiński
Nikolaos S. Papageorgiou
+ An Overview on Singular Nonlinear Elliptic Boundary Value Problems 2018 Francesca Faraci
George Smyrlis
+ A BIFURCATION-TYPE THEOREM FOR THE POSITIVE SOLUTIONS OF A NONLINEAR NEUMANN PROBLEM WITH CONCAVE AND CONVEX TERMS 2010 Dimitrie Kravvaritis
Nikolaus S Papageorgiou
George Smyrlis
+ PDF Chat Multiple Solutions for Nonlinear Dirichlet Problems with Concave Terms 2013 Leszek Gasiński
Nikolaos S. Papageorgiou
+ PDF Chat Positive solutions for nonlinear singular problems with sign-changing nonlinearities 2023 Yunru Bai
Nikolaos S. Papageorgiou
Shengda Zeng
+ PDF Chat Mixed elliptic problems involving the <inline-formula><tex-math id="M1">\begin{document}$p-$\end{document}</tex-math></inline-formula>Laplacian with nonhomogeneous boundary conditions 2017 Gabriele Bonanno
Giuseppina D’Aguí
+ A Dirichlet problem with singular and supercritical nonlinearities 2011 Lucio Boccardo
+ Combined effects of singular and critical nonlinearities in elliptic problems 2013 Xing Wang
Lin Zhao
Peihao Zhao
+ PDF Chat Nonlinear elliptic equations with asymmetric asymptotic behavior at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mo>±</mml:mo><mml:mi>∞</mml:mi></mml:math> 2016 Pasquale Candito
Roberto Livrea
Nikolaos S. Papageorgiou
+ PDF Chat Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator 2011 Dumitru Motreanu
Nikolaos S. Papageorgiou
+ PDF Chat Positive solutions for parametric singular Dirichlet<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si8.svg"><mml:mrow><mml:mo>(</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>-equations 2020 Νικόλαος Παπαγεωργίου
Calogero Vetro
Youpei Zhang
+ Combined effects of concave–convex nonlinearities and indefinite potential in some elliptic problems 2015 Nikolaos S. Papageorgiou
Vicenţiu D. Rădulescu
+ (p,q)-Equations with singular and concave convex nonlinearities 2020 Nikolaos S. Papageorgiou
Patrick Winkert
+ (p,q)-Equations with singular and concave convex nonlinearities 2020 Nikolaos S. Papageorgiou
Patrick Winkert
+ On the Neumann problem with singular and superlinear nonlinearities 2009 J. Chabrowski
+ Elliptic problems with mixed nonlinearities and potentials singular at the origin and at the boundary of the domain 2022 Bartosz Bieganowski
Adam Konysz
+ PDF Chat Multiple and nodal solutions for nonlinear equations with a nonhomogeneous differential operator and concave-convex terms 2014 Michael Ε. Filippakis
Donal O’Regan
Nikolaos S. Papageorgiou