On a two-dimensional analogue of Szemerédi's theorem in Abelian groups

Type: Article

Publication Date: 2009-10-22

Citations: 9

DOI: https://doi.org/10.1070/im2009v073n05abeh002472

Locations

  • Izvestiya Mathematics - View

Similar Works

Action Title Year Authors
+ On a two-dimensional analog of Szemeredi's Theorem in Abelian groups 2007 Ilya D. Shkredov
+ On a Generalization of Szemeredi's Theorem 2005 Ilya D. Shkredov
+ PDF Chat ON A GENERALIZATION OF SZEMERÉDI'S THEOREM 2006 Ilya D. Shkredov
+ Szemerédi's theorem and problems on arithmetic progressions 2006 Ilya D. Shkredov
+ Finite Analogs of Szemerédi's Theorem 2009 Paul Raff
Doron Zeilberger
+ Erd\H{o}s and Arithmetic Progressions 2015 W. T. Gowers
+ Erdős and Arithmetic Progressions 2015 W. T. Gowers
+ PDF Chat NEW BOUNDS FOR SZEMERÉDI'S THEOREM, III: A POLYLOGARITHMIC BOUND FOR 2017 Ben Green
Terence Tao
+ Enumeration of three term arithmetic progressions in fixed density sets 2014 Erik Sjöland
+ A New Proof of Szemer�di's Theorem for Arithmetic Progressions of Length Four 1998 W. T. Gowers
+ PDF Chat Finite analogs of Szemerédi’s theorem 2010 Paul Raff
Doron Zeilberger
+ Contributions to the Erdős’ conjecture on arithmetic progressions 2009 Roman Wituła
Damian Słota
+ In All Directions: Higher Dimensional Arithmetic Progressions in Meyer Sets 2021 Anna Klick
+ Additive Combinatorics 2006 Terence Tao
Van H. Vu
+ Of Arithmetical Progressions 1972 Leonard Euler
+ Erdős Semi-Groups, Arithmetic Progressions, and Szemerédi's Theorem 2019  Yu
+ Independent sets and arithmetic progressions 1971 John J. Benedetto
+ Freiman's Theorem in an arbitrary abelian group 2005 Ben Green
Imre Z. Ruzsa
+ ROTH'S THEOREM ON ARITHMETIC PROGRESSIONS 2003 Alex Iosevich
+ Sums of Arithmetic Progressions 1995 Roger Cook
D. W. Sharpe