Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation

Type: Article

Publication Date: 2010-11-19

Citations: 23

DOI: https://doi.org/10.1090/s0002-9939-2010-10532-4

Abstract

Here we consider results concerning ill-posedness for the Cauchy problem associated with the Benjamin-Ono-Zakharov-Kuznetsov equation, namely, \begin{equation*} \left \{ \begin {array}{ll} u_t-\mathscr {H}u_{xx}+u_{xyy}+u^ku_x=0, \qquad (x,y)\in \mathbb {R}^2,\;\;t\in \mathbb {R}^+, \\ u(x,y,0)=\phi (x,y). \end{array} \right .\tag *{(IVP)} \end{equation*} For $k=1$, (IVP) is shown to be ill-posed in the class of anisotropic Sobolev spaces $H^{s_1,s_2}(\mathbb {R}^2), s_1,s_2\in \mathbb {R}$, while for $k\geq 2$ ill-posedness is shown to hold in $H^{s_1,s_2}(\mathbb {R}^2), 2s_1+s_2<3/2-2/k$. Furthermore, for $k=2,3$, and some particular values of $s_1,s_2$, a stronger result is also established.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in weighted Sobolev spaces 2013 Alysson Cunha
Ademir Pastor
+ The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in weighted Sobolev spaces 2013 Alysson Cunha
Ademir Pastor
+ PDF Chat The IVP for the Benjamin–Ono–Zakharov–Kuznetsov equation in weighted Sobolev spaces 2014 Alysson Cunha
Ademir Pastor
+ The IVP for the Benjamin–Ono–Zakharov–Kuznetsov equation in low regularity Sobolev spaces 2016 Alysson Cunha
Ademir Pastor
+ The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces 2016 Alysson Cunha
Ademir Pastor
+ The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces 2016 Alysson Cunha
Ademir Pastor
+ On the Cauchy problem associated to a regularized Benjamin-Ono--Zakharov-Kuznetsov (rBO-ZK) type equation 2018 FabiĂĄn SĂĄnchez S.
FĂ©lix H. Soriano M.
+ On the Cauchy problem associated to a regularized Benjamin-Ono--Zakharov-Kuznetsov (rBO-ZK) type equation 2018 FabiĂĄn SĂĄnchez S.
FĂ©lix H. Soriano M.
+ PDF Chat On special regularity properties of solutions of the benjamin-ono-zakharov-kuznetsov (bo-zk) equation 2020 Ailton C. Nascimento
+ Sharp well-posedness results for the generalized Benjamin-Ono equation with high nonlinearity 2007 Stéphane Vento
+ PDF Chat Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation 2016 Francis Ribaud
Stéphane Vento
+ PDF Chat Sharp well-posedness results for the generalized Benjamin-Ono equation with high nonlinearity 2009 Stéphane Vento
+ On ill-posedness for the generalized BBM equation 2014 Xavier Carvajal
Mahendra Panthee
+ On some regularity properties for the dispersive generalized Benjamin-Ono-Zakharov-Kuznetsov Equation 2020 Ricardo. C. Freire
Argenis J. Mendez
Oscar Riaño
+ PDF Chat On some regularity properties for the dispersive generalized Benjamin-Ono-Zakharov-Kuznetsov Equation 2022 Ricardo. C. Freire
Argenis J. Mendez
Oscar Riaño
+ Well-posedness of Cauchy problems for Korteweg-de Vries-Benjamin-Ono equation and Hirota equation 2004 Zhaohui Huo
Boling Guo
+ Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation 2016 Francis Ribaud
Stéphane Vento
+ Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation 2016 Francis Ribaud
Stéphane Vento
+ Sharp well-posedness for the Benjamin–Ono equation 2024 Rowan Killip
Thierry Laurens
Monica ViƟan
+ The Cauchy Problem for the Generalized Korteweg-de Vries-Benjamin-Ono Equation with Low Regularity Data 2005 Zhao
Hui Hui
Huo
Bo Bo
Ling
Guo