On the Nonparametric Estimation of Covariance Functions

Type: Article

Publication Date: 1994-12-01

Citations: 144

DOI: https://doi.org/10.1214/aos/1176325774

Abstract

We describe kernel methods for estimating the covariance function of a stationary stochastic process, and show how to ensure that the estimator has the positive semidefiniteness property. From a practical viewpoint, our method is significant because it does not demand a parametric model for covariance. From a technical angle, our results exhibit a striking departure from those in more familiar cases of kernel estimation. For example, in the context of covariance estimation, kernel estimators can have the same convergence rates as maximum likelihood estimators, and can have exceptionally fast convergence rates when employed to estimate variance.

Locations

  • The Annals of Statistics - View - PDF

Similar Works

Action Title Year Authors
+ NONPARAMETRIC COVARIANCE MODEL. 2010 Jianxin Yin
Zhi Geng
Runze Li
Hansheng Wang
+ Kernel density estimation for linear processes: asymptotic normality and bandwidth selection 1996 Marc Hallin
Lanh Tat Tran
+ Kernel density estimation for linear processes: asymptotic normality and bandwidth selection 1996 Marc Hallin
Lanh Tat Tran
+ Kernel density estimation for linear processes: asymptotic normality and bandwidth selection 1996 Marc Hallin
Lanh Tat Tran
+ Nonparametric Covariance Model 2008 Jianxin Yin
Zhi Geng
Runze Li
Hansheng Wang
+ A note on kernel density estimation for non-negative random variables 2001 Tonino Sclocco
Marco Di Marzio
+ On the convergence of kernel estimators of probability density functions 1981 Albert Rust
Chris P. Tsokos
+ Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation 1996 Marc Hallin
Lanh Tat Tran
+ Kernel density estimation under dependence 1990 Lanh Tat Tran
+ Estimation the asymptotic variance of kernel smoothers for dependent data 1999 Cira Perna
Francesco Giordano
+ Kernel density estimation for linear processes 1992 Lanh Tat Tran
+ PDF Chat Estimating Covariance Matrices Using Estimating Functions in Nonparametric and Semiparametric Regression 1997 Raymond J. Carroll
Stephen J. Iturria
R. Gutiérrez
+ On kernel estimation of a multivariate distribution function 1999 Zhezhen Jin
Yongzhao Shao
+ On the asymptotic variance of the continuous-time kernel density estimator 1999 Martin Sköld
Ola Hössjer
+ PDF Chat Nonparametric density estimation for linear processes with infinite variance 2007 Toshio Honda
+ Nonparametric Density Estimation 1998 Aad van der Vaart
+ On conditional variance estimation in nonparametric regression 2012 Siddhartha Chib
Edward Greenberg
+ Nonparametric estimation of conditional probability densities and expectations of stationary processes: strong consistency and rates 1989 Elias Masry
+ Kernel Nonparametric Estimation 2008 Myoung‐jae Lee
+ Asymptotic normality of kernel density function estimator from continuous time stationary and dependent processes 2018 NaĂąmane LaĂŻb
Djamal Louani

Works Cited by This (0)

Action Title Year Authors