Primes in tuples III: On the difference {$p_{n + \nu}- p_n$}

Type: Article

Publication Date: 2006-01-01

Citations: 12

DOI: https://doi.org/10.7169/facm/1229442618

Abstract

In the present work we prove a new estimate for $\Delta_\nu:=\liminf_{n \to \infty} \frac{(p_{n+\nu}-p_n)}{\log p_n}$, where $p_n$ denotes the $n$th prime. Combining our recent method which led to $\Delta_1=0$ with Maier's matrix method, we show that $\Delta_\nu\leq e^{-\gamma}(\sqrt{\nu}-1)^2$. We also extend the result to primes in arithmetic perogressions where the modulus can tend slowly to infinity as a function of $p_n$.

Locations

  • Functiones et Approximatio Commentarii Mathematici - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Primes in tuples II 2010 D. A. Goldston
J. Pintz
C. Y. Yıldırım
+ Breakthrough Results on Prime Numbers 2024 Frank Vega
+ Numerical Computations on Prime Numbers 2024 Frank Vega
+ Numerical Computations on Prime Numbers 2024 Frank Vega
+ Primes in Tuples II 2007 D. A. Goldston
J. Pintz
C. Y. Yıldırım
+ Primes in Tuples II 2007 D. A. Goldston
J. Pintz
C. Y. Yıldırım
+ Counting primes revisited 2016 Alejandro Miralles
Damià Torres
+ Prime numbers of the form $$[\text {n}^c \tan ^\theta (\log \text {n})]$$ 2023 Stoyan Dimitrov
+ Sharper bounds for the error term in the Prime Number Theorem 2022 Andrew Fiori
Habiba Kadiri
Joshua Swindisky
+ Primes in Tuples I 2005 D. A. Goldston
J. Pintz
C. Y. Yıldırım
+ Möbius function and primes: an identity factory with applications 2023 Olivier Ramaré
Sebastian Zuniga Alterman
+ Explicit Estimates in the Theory of Prime Numbers 2016 Adrian Dudek
+ Explicit Estimates in the Theory of Prime Numbers 2016 Adrian Dudek
+ Bounds on the Number of Primes in Ramanujan Interval 2021 Jan Feliksiak
+ PDF Chat Primes in tuples I 2009 D. A. Goldston
J. Pintz
C. Y. Yıldırım
+ PDF Chat Primes of the form $p^2 + nq^2$ 2024 Ben Green
Mehtaab Sawhney
+ Primes of the form $p=1+n!\sum n,$ for some $n\in\mathbb{N}^{+}$ 2018 Maheswara Rao Valluri
+ Primes of the form $p=1+n!\sum n,$ for some $n\in\mathbb{N}^{+}$ 2018 Maheswara Rao Valluri
+ Prime Number Sums 2018 Paul A. Bradley
+ Prime Number Sums 2018 Paul Bradley