Type: Article
Publication Date: 2006-01-01
Citations: 12
DOI: https://doi.org/10.7169/facm/1229442618
In the present work we prove a new estimate for $\Delta_\nu:=\liminf_{n \to \infty} \frac{(p_{n+\nu}-p_n)}{\log p_n}$, where $p_n$ denotes the $n$th prime. Combining our recent method which led to $\Delta_1=0$ with Maier's matrix method, we show that $\Delta_\nu\leq e^{-\gamma}(\sqrt{\nu}-1)^2$. We also extend the result to primes in arithmetic perogressions where the modulus can tend slowly to infinity as a function of $p_n$.