Some primes of the form (𝑎ⁿ-1)/(𝑎-1)

Type: Article

Publication Date: 1979-01-01

Citations: 16

DOI: https://doi.org/10.1090/s0025-5718-1979-0537980-7

Abstract

A table of primes of the form <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis a Superscript n Baseline minus 1 right-parenthesis slash left-parenthesis a minus 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>a</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">({a^n} - 1)/(a - 1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for values of <italic>a</italic> and <italic>n</italic> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="3 less-than-or-slanted-equals a less-than-or-slanted-equals 12"> <mml:semantics> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mi>a</mml:mi> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mn>12</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">3 \leqslant a \leqslant 12</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 less-than-or-slanted-equals n less-than-or-slanted-equals 1000"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mi>n</mml:mi> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mn>1000</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">2 \leqslant n \leqslant 1000</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is presented. A description is given of the techniques used to obtain this table, and some numbers such as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis 10 Superscript 1031 Baseline minus 1 right-parenthesis slash 9"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>10</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1031</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>9</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">({10^{1031}} - 1)/9</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which are pseudoprime but whose primality is not yet rigorously established are also discussed.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Some very large primes of the form 𝑘⋅2^{𝑚}+1 1980 Gordon V. Cormack
Hywel C Williams
+ PDF Chat Some prime numbers of the forms 2𝐴3ⁿ+1 and 2𝐴3ⁿ-1 1972 Hywel C Williams
C. R. Zarnke
+ PDF Chat Some new primes of the form 𝑘⋅2ⁿ+1 1977 G. Matthew
Hywel C Williams
+ PDF Chat Primes of the form 𝑛!±1 and 2⋅3⋅5⋯𝑝±1 1982 Joe Buhler
Richard E. Crandall
M. A. Penk
+ PDF Chat New primes of the form 𝑘⋅2ⁿ+1 1979 Robert Baillie
+ PDF Chat Some large primes and amicable numbers 1981 Walter Borho
+ PDF Chat Primes at a glance 1987 R. Kent Guy
C. B. Lacampagne
J. L. Selfridge
+ PDF Chat Primes of the form 𝑝=1+𝑚²+𝑛² in short intervals 1998 Jie Wu
+ PDF Chat On primes 𝑝 with 𝜎(𝑝^{𝛼})=𝑚² 1987 J. Chidambaraswamy
P. V. Krishnaiah
+ Primes of the form <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">⌊</mml:mo><mml:mi>α</mml:mi><mml:mi>p</mml:mi><mml:mo>+</mml:mo><mml:mi>β</mml:mi><mml:mo stretchy="false">⌋</mml:mo></mml:math> 2009 Hongze Li
Hao Pan
+ PDF Chat Mullin’s sequence of primes is not monotonic 1984 Thorkil Naur
+ PDF Chat Some factors of the numbers 𝐺_{𝑛}=6²ⁿ+1 and 𝐻_{𝑛}=10²ⁿ+1 1969 Hans Riesel
+ PDF Chat Some pseudoprimes and related numbers having special forms 1989 Wayne L. McDaniel
+ Long gaps between primes 2017 Kevin Ford
Ben Green
Sergeĭ Konyagin
James Maynard
Terence Tao
+ PDF Chat Gaps between prime numbers 1988 Adolf Hildebrand
Helmut Maier
+ PDF Chat Primes differing by a fixed integer 1981 W. G. Leavitt
Albert A. Mullin
+ The first occurrence of certain large prime gaps 1980 Richard P. Brent
+ A note on non-ordinary primes 2016 Seokho Jin
Wenjun Ma
Ken Ono
+ PDF Chat On the prime factors of (²ⁿ_{𝑛}) 1975 Péter L. Erdős
R. L. Graham
Imre Z. Ruzsa
E. G. Straus
+ PDF Chat Long chains of nearly doubled primes 1989 Günter Löh