Type: Article
Publication Date: 2004-02-01
Citations: 229
DOI: https://doi.org/10.1214/aoap/1075828054
We show how to combine Fourier analysis with coupling arguments to bound the mixing times of a variety of Markov chains. The mixing time is the number of steps a Markov chain takes to approach its equilibrium distribution. One application is to a class of Markov chains introduced by Luby, Randall, and Sinclair to generate random tilings of regions by lozenges. For an L X L region we bound the mixing time by O(L^4 log L), which improves on the previous bound of O(L^7), and we show the new bound to be essentially tight. In another application we resolve a few questions raised by Diaconis and Saloff-Coste, by lower bounding the mixing time of various card-shuffling Markov chains. Our lower bounds are within a constant factor of their upper bounds. When we use our methods to modify a path-coupling analysis of Bubley and Dyer, we obtain an O(n^3 log n) upper bound on the mixing time of the Karzanov-Khachiyan Markov chain for linear extensions.