Simple near-ring centralizers of finite rings

Type: Article

Publication Date: 1979-01-01

Citations: 11

DOI: https://doi.org/10.1090/s0002-9939-1979-0529202-x

Abstract

For a finite ring <italic>R</italic> with identity and a finite unital <italic>R</italic>-module <italic>V</italic> we call <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C left-parenthesis upper R right-parenthesis equals left-brace f colon upper V right-arrow upper V vertical-bar f left-parenthesis alpha v right-parenthesis equals alpha f left-parenthesis v right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>V</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>v</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C(R) = \{ f:V \to V|f(\alpha v) = \alpha f(v)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha element-of upper R comma v element-of upper V right-brace"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>V</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\alpha \in R,v \in V\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the near-ring centralizer of <italic>R</italic>. We investigate the structure of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C left-parenthesis upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C(R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and obtain a characterization of those rings <italic>R</italic> for which <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C left-parenthesis upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C(R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a simple nonring.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Centralizer near-rings that are endomorphism rings 1980 Carlton J. Maxson
Kirby C. Smith
+ PDF Chat Near-rings associated with matched pairs on ring modules 1994 C. J. Maxson
A. P. J. van der Walt
+ PDF Chat Injective near-ring modules over 𝑍_{𝑛} 1978 J. D. P. Meldrum
+ PDF Chat Local rings of relatively small type are Cohen-Macaulay 1994 Takesi Kawasaki
+ PDF Chat Simple near-rings associated with meromorphic products 1989 C. J. Maxson
Kirby C. Smith
+ PDF Chat On rings for which homogeneous maps are linear 1991 Peter Fuchs
C. J. Maxson
Günter Pilz
+ PDF Chat 𝐼-rings 1975 W. K. Nicholson
+ Primitive near-rings 1973 Gerhard Betsch
+ PDF Chat Central localizations of regular rings 1974 Efraim P. Armendariz
Joe W. Fisher
Stuart A. Steinberg
+ Constructing division rings as module-theoretic direct limits 2002 George M. Bergman
+ Rings which are a Homomorphic Image of a Centralizer Near-Ring 1995 Kirby C. Smith
+ PDF Chat Simple Near-Ring Centralizers of Finite Rings 1979 Carlton J. Maxson
Kirby C. Smith
+ PDF Chat Characterizing series for faithful d.g. near-rings 1978 J. D. P. Meldrum
C. G. Lyons
+ Centralizer near-rings determined by PID-modules 1991 Peter Fuchs
C. J. Maxson
+ Ideals In Near Rings 2018 Hadeel Mohammad Suliman
+ 𝐺₀ of a graded ring 1972 Leslie G. Roberts
+ PDF Chat 𝐾-theory of commutative regular rings 1973 Andy R. Magid
+ ℎ-local Rings 2021 Lee Klingler
Akeel Omairi
+ Centralizer Near-Rings Determined by Unions of Groups 1987 Peter Fuchs
C. J. Maxson
Kirby C. Smith
+ PDF Chat Finitely generated right ideals of transformation near-rings 1980 Stuart D. Scott