Ergodic properties of quantized toral automorphisms

Type: Article

Publication Date: 1997-01-01

Citations: 18

DOI: https://doi.org/10.1063/1.531835

Abstract

We study the ergodic properties for a class of quantized toral automorphisms, namely the cat and Kronecker maps. The present work uses and extends the results of Klimek and Leśniewski [Ann. Phys. 244, 173–198 (1996)]. We show that quantized cat maps are strongly mixing, while Kronecker maps are ergodic and nonmixing. We also study the structure of these quantum maps and show that they are effected by unitary endomorphisms of a suitable vector bundle over a torus. This allows us to exhibit explicit relations between our Toeplitz quantization and the semiclassical quantization of cat maps proposed by Hannay and Berry [Physica D 1, 267–290 (1980)].

Locations

  • Journal of Mathematical Physics - View
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ Ergodic properties of quantized toral automorphisms 1995 Sławomir Klimek
A. Leśniewski
Neepa T. Maitra
Ron Rubin
+ PDF Chat Quantization of multidimensional cat maps 2000 Alejandro M. F. Rivas
Marcos Saraceno
Alfredo M. Ozorio de Almeida
+ PDF Chat Upper Bounds on the Rate of Quantum Ergodicity 2006 Roman Schubert
+ Statistical Properties of Quantized Toral Automorphisms 2022 Nir Schwartz
+ PDF Chat On quantum ergodicity for higher dimensional cat maps 2024 Pär Kurlberg
Alina Ostafe
Zeév Rudnick
Igor E. Shparlinski
+ Small scale quantum ergodicity in cat maps. I 2018 Xiaolong Han
+ A Remark on Quantum Ergodicity for CAT Maps 2007 Jean Bourgain
+ ON QUANTUM ERGODICITY FOR LINEAR MAPS OF 1999 Ar Kurlberg
Ze Ze
Ev Rudnick
+ PDF Chat Scarring on Invariant Manifolds for Perturbed Quantized Hyperbolic Toral Automorphisms 2007 Dubi Kelmer
+ Controlling strong scarring for quantized ergodic toral automorphisms 2003 Francesco Bonechi
Stephan De Bièvre
+ PDF Chat Ergodic states in a non commutative ergodic theory 1968 Sergio Doplicher
Daniel Kastler
+ PDF Chat Quantum unique ergodicity for parabolic maps 2000 Jens Marklof
Zeév Rudnick
+ On quantum ergodicity for linear maps of the torus 1999 Pär Kurlberg
Zeév Rudnick
+ Furstenberg transformations on Cartesian products of infinite-dimensional tori 2015 P. A. Cecchi
Rafael Tiedra de Aldecoa
+ PDF Chat On Quantum Ergodicity for Linear Maps of the Torus 2001 P. Kurlberg
Ze x E v Rudnick
+ Index and Dynamics of Quantized Contact Transformations 2000 Steve Zelditch
+ PDF Chat On the Rate of Quantum Ergodicity for Quantised Maps 2008 Roman Schubert
+ PDF Chat Index and dynamics of quantized contact transformations 1997 Steven Zelditch
+ Entropy and Ergodic Measures for Toral Automorphisms 2011 Peng Sun
+ Ergodic Theory 2001 Robert Alicki
Mark Fannes