Homology with multiple-valued functions applied to fixed points

Type: Article

Publication Date: 1975-01-01

Citations: 13

DOI: https://doi.org/10.1090/s0002-9947-1975-0380778-6

Abstract

Certain multiple-valued functions (<italic>m</italic>-functions) are defined and a homology theory based upon them is developed. In this theory a singular simplex is an <italic>m</italic>-function from a standard simplex to a space and an <italic>m</italic>-function from one space to another induces a homomorphism of homology modules. In a family of functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f Subscript x Baseline colon upper Y right-arrow upper Y"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>x</mml:mi> </mml:msub> </mml:mrow> <mml:mo>:</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>Y</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{f_x}:Y \to Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> indexed by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x element-of upper X"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>X</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">x \in X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the fixed points of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f Subscript x"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>x</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{f_x}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are taken to be the images at <italic>x</italic> of a multiple-valued function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi colon upper X right-arrow upper Y"> <mml:semantics> <mml:mrow> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>Y</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi :X \to Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In certain circumstances <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi"> <mml:semantics> <mml:mi>ϕ<!-- ϕ --></mml:mi> <mml:annotation encoding="application/x-tex">\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an <italic>m</italic>-function, giving information about the behavior of the fixed points of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f Subscript x"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>x</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{f_x}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as <italic>x</italic> varies over <italic>X</italic>. These facts are applied to self-maps of products of compact polyhedra and the question of whether such a product has the fixed point property for continuous functions is essentially reduced to the question of whether one of its factors has the fixed point property for <italic>m</italic>-functions. Some light is thrown on the latter problem by using the homology theory to prove a Lefschetz fixed point theorem for <italic>m</italic>-functions.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Singular homology and applications 2015 Jason R. Wilson
+ PDF Chat The cohomology of certain function spaces 1991 Martin Bendersky
Sam Gitler
+ Multiple points of a simplicial map and image-computing spectral sequences 2019 José Luis Cisneros‐Molina
David Mond
+ Homology of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>-types and Hopf type formulas 2005 J. M. Casas
Nick Inassaridze
Emzar Khmaladze
M. Ladra
+ Geometric Homology 2014 Max Lipyanskiy
+ Geometric Homology 2014 Max Lipyanskiy
+ PDF Chat Construction of functors connecting homology and homotopy theories 1994 Sara Dragotti
Richard Esposito
G. Magro
+ Singular homology: an introduction 1980 Czes Kosniowski
+ Operads of moduli spaces of points in ℂ^{𝕕} 2013 Craig Westerland
+ Gromov’s Theory of Multicomplexes with Applications to Bounded Cohomology and Simplicial Volume 2023 Roberto Frigerio
Marco Moraschini
+ Singular Homology 1995 Albrecht Dold
+ Factorization homology and applications (introductory lecture) 2018 David Jordan
+ Homology and Cohomology Theories: An Axiomatic Approach with Consequences 2022 Mahima Ranjan Adhikari
+ PDF Chat Graded algebras having a unique rational homotopy type 1982 Hiroo Shiga
Nobuaki Yagita
+ PDF Chat Homology of complex projective hypersurfaces with isolated singularities 1976 John L. Miller
+ Stable<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">A</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-homotopy and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mi>R</mml:mi></mml:math>-equivalence 2011 Aravind Asok
Christian Haesemeyer
+ Álgebra homotópica en categorías que modelan algebraicamente espacios no conexos 1999 Raquel Osorio Blanco
+ Homology Theory 1960 P. J. Hilton
S. Wylie
+ On the cohomology of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="normal">SL</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2024 Avner Ash
+ Homotopía propia simplicial 2002 J.M. García-Calcines
Sergio Rodríguez Machín
Luis Javier Hernández Paricio