A (p, q)-deformed Landau problem in a spherical harmonic well: Spectrum and noncommuting coordinates

Type: Article

Publication Date: 2007-10-01

Citations: 10

DOI: https://doi.org/10.1209/0295-5075/80/30001

Abstract

A (p, q)-deformation of the Landau problem in a spherically symmetric harmonic potential is considered. The quantum spectrum as well as space noncommutativity are established, whether for the full Landau problem or its quantum Hall projections. The well-known noncommutative geometry in each Landau level is recovered in the appropriate limit p,q=1. However, a novel noncommutative algebra for space coordinates is obtained in the (p, q)-deformed case, which could also be of interest to collective phenomena in condensed-matter systems.

Locations

  • EPL (Europhysics Letters) - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat THE LANDAU PROBLEM AND NONCOMMUTATIVE QUANTUM MECHANICS 2001 J. Gamboa
F. Méndez
M. Loewe
J. C. Rojas
+ Towards adelic noncommutative quantum mechanics 2003 Goran S. Djordjević
Ljubiša Nešić
+ PDF Chat Towards Adelic Noncommutative Quantum Mechanics 2003 Goran S. Djordjević
Ljubiša Nešić
+ Towards Adelic Noncommutative Quantum Mechanics 2004 Goran S. Djordjević
Ljubiša Nešić
+ PDF Chat Weyl–Wigner formulation of noncommutative quantum mechanics 2008 Catarina Bastos
Orfeu Bertolami
Nuno Costa Dias
João Nuno Prata
+ PDF Chat Quantum mechanics on the noncommutative plane and sphere 2001 V. P. Nair
Alexios P. Polychronakos
+ Noncommutative Landau problem and shifted energy levels 2018 Nurisya Mohd Shah
+ PDF Chat Landau problem in noncommutative quantum mechanics 2008 Sayipjamal Dulat
Kang Li
+ PDF Chat Noncommutativity in (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>2</mml:mn><mml:mo mathvariant="bold">+</mml:mo><mml:mn>1</mml:mn></mml:math>)-dimensions and the Lorentz group 2012 H. Falomir
F. Vega
J. Gamboa
F. Méndez
M. Loewe
+ PDF Chat q-Deformed Heisenberg Algebras 2000 Julius Wess
+ Non-Archimedean Quantum Mechanics via Quantum Groups 2022 W. A. Zúñiga–Galindo
+ q-Deformed Heisenberg Algebras 1999 J. Wess
+ PDF Chat An Introduction to Noncommutative Physics 2023 Shi‐Dong Liang
Matthew J. Lake
+ PDF Chat Position-dependent noncommutativity in quantum mechanics 2009 M. Gomes
Vladislav Kupriyanov
+ Non-Archimedean quantum mechanics via quantum groups 2022 W. A. Zúñiga–Galindo
+ DEFORMED HARMONIC OSCILLATOR AND NONLINEAR COHERENT STATES: NONCOMMUTATIVE QUANTUM SPACE APPROACH 2009 M. H. Naderi
M. Soltanolkotabi
R. Roknizadeh
+ PDF Chat On Quantum Mechanics on Noncommutative Quantum Phase Space 2004 A. E. F. Djemai
H. Smail
+ Non-Hermitian two-dimensional harmonic oscillator in noncommutative phase-space 2023 Emanonfi Elias N’Dolo
+ Quantization of Length in Spaces with Position-Dependent Noncommutativity 2024 Jishnu Aryampilly
B. Muthukumar
Aamir Rashid
+ PDF Chat Non-Hermitian two-dimensional harmonic oscillator in noncommutative phase-space 2023 Emanonfi Elias N’Dolo