On integrable and bounded automorphic forms

Type: Article

Publication Date: 1971-01-01

Citations: 15

DOI: https://doi.org/10.1090/s0002-9939-1971-0280713-7

Abstract

A necessary and sufficient condition that every integrable automorphic form of dimension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="greater-than negative 2"> <mml:semantics> <mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">&gt; - 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a bounded form is established. Using this condition, it is shown that, for a finitely generated Fuchsian group acting on the unit disc and containing no parabolic elements, every integrable automorphic form of dimension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="greater-than negative 2"> <mml:semantics> <mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">&gt; - 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is bounded. Here the dimension is not required to be integral. In the case of even integral dimension and standard factors of automorphy, this latter result is contained in D. Drasin and C. J. Earle, Proc. Amer. Math. Soc. <bold>19</bold> (1968), 1039-1042, but the present approach is entirely different. Also, using the argument of Drasin and Earle, it is proved that, for finitely generated Fuchsian groups of second kind, every integrable automorphic form of dimension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="negative 2"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">- 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is zero.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On Integrable and Bounded Automorphic Forms 1971 T. A. Metzger
K. V. Rajeswara Rao
+ PDF Chat On the boundedness of 𝑝-integrable automorphic forms 1974 K. V. Rajeswara Rao
+ PDF Chat On boundedness of integrable automorphic forms in 𝐶ⁿ 1980 Su Shing Chen
+ PDF Chat On integrable and bounded automorphic forms. II 1972 T. A. Metzger
K. V. Rajeswara Rao
+ On Integrable and square integrable automorphic forms 1971 Thomas A. Metzger
+ PDF Chat On Integrable and Bounded Automorphic Forms. II 1972 T. A. Metzger
K. V. Rajeswara Rao
+ PDF Chat On the Boundedness of Automorphic Forms 1968 David Drasin
C. J. Earle
+ On the Boundedness of p-Integrable Automorphic Forms 1974 K. V. Rajeswara Rao
+ PDF Chat On the boundedness of integrable automorphic forms 1974 Joseph Lehner
+ On integrable automorphic forms and P-sequences of additive automorphic functions 1981 Rauno Aulaskari
+ Finite dimensionality of the space of automorphic forms of a given type 1997 Armand Borel
+ On the Construction of Certain Automorphic Forms of Non-Negative Dimension 1958 Marvin I. Knopp
+ On inclusion relations for spaces of automorphic forms 1976 Ch. Pommerenke
+ Automorphic Forms 1989 Toshitsune Miyake
+ PDF Chat Functions automorphic on large domains 1973 David A. James
+ New aspects of automorphic and smooth-automorphic forms 2023
+ PDF Chat Perturbation theory for the Laplacian on automorphic functions 1992 Ralph S. Phillips
Peter Sarnak
+ ARITHMETICITY IN THE THEORY OF AUTOMORPHIC FORMS (Mathematical Surveys and Monographs 82) <i>By</i> G<scp>ORO</scp> S<scp>HIMURA</scp>: 302 pp., US$69.00, <scp>ISBN</scp> 0-8218-2671-9 (American Mathematical Society, Providence, RI, 2000). 2001 Kevin Buzzard
+ Automorphic forms on SL[2](R) 2008 Armand Borel
+ Automorphic Forms and 𝐿-functions II 2009 David Ginzburg
Erez Lapid
David Soudry