Microstates free entropy and cost of equivalence relations

Type: Article

Publication Date: 2003-06-15

Citations: 11

DOI: https://doi.org/10.1215/s0012-7094-03-11831-1

Abstract

We define an analog of Voiculescu's free entropy for $n$-tuples of unitaries $u\sb 1,\ldots u\sb n$ in a tracial von Neumann algebra $M$ which normalize a unital subalgebra $L\sp \infty[0,1]=B\subset M$. Using this quantity, we define the free dimension $\delta\sb 0(u\sb 1,\ldots,u\sb n\between B)$. This number depends on $u\sb 1,\ldots u\sb n$ only up to orbit equivalence over $B$. In particular, if $R$ is a measurable equivalence relation on $[0,1]$ generated by $n$ automorphisms $\alpha\sb 1,\ldots \alpha\sb n$, let $u\sb 1,\ldots u\sb n$ be the unitaries implementing $\alpha\sb 1,\ldots \alpha\sb n$ in the Feldman-Moore crossed product algebra $M=W\sp \ast([0,1],R)\supset B=L\sp \infty[0,1]$. Then the number $\delta(R)=\delta\sb 0(u\sb 1,\ldots u\sb n\between B)$ is an invariant of the equivalence relation $R$. If $R$ is treeable, $\delta(R)$ coincides with the cost $C(R)$ of $R$ in the sense of D. Gaboriau. In particular, it is $n$ for an equivalence relation induced by a free action of the free group $\mathbb {F}\sb n$. For a general equivalence relation $R$ possessing a finite graphing of finite cost, $\delta(R)\leq C(R)$. Using the notion of free dimension, we define a dynamical entropy invariant for an automorphism of a measurable equivalence relation (or, more generally, of an $r$-discrete measure groupoid) and give examples.

Locations

  • Duke Mathematical Journal - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Microstates free entropy and cost of equivalence relations 1999 Dimitri Shlyakhtenko
+ Free products of measured equivalence relations 2003 Hideki Kosaki
+ Entropy on normed semigroups (A unifying approach to entropy) 2018 Dikran Dikranjan
Anna Giordano Bruno
+ The von Neumann Algebra of the Canonical Equivalence Relation of the Thompson Group 2004 Dorin Ervin Dutkay
Gabriel Picioroaga
+ PDF Chat A free entropy dimension lemma 2003 Kenley Jung
+ The von Neumann Algebra of the Canonical Equivalence Relation of the Generalized Thompson Group 2004 Dorin Ervin Dutkay
Gabriel Picioroaga
+ Entropy on normed semigroups (Towards a unifying approach to entropy) 2018 Dikran Dikranjan
Anna Giordano Bruno
+ Entropy on normed semigroups (Towards a unifying approach to entropy) 2018 Dikran Dikranjan
Anna Giordano Bruno
+ Uniform non-amenability, cost, and the first l^2-Betti number 2007 Russell Lyons
Mikaël Pichot
Stéphane Vassout
+ Uniform non-amenability, cost, and the first l^2-Betti number 2007 Russell Lyons
Mikaël Pichot
Stéphane Vassout
+ PDF Chat MF-traces and a lower bound for the topological free entropy dimension in unital C*-algebras 2014 Qihui Li
Don Hadwin
Weihua Li
Junhao Shen
+ Correlation Entropy of Free Semigroup Actions 2024 Xiaojiang Ye
Yanjie Tang
Dongkui Ma
+ Reduced ${\bi C}^*$-crossed products by free shifts 1998 Marie Choda
Toshikazu Natsume
+ Graphs of functions and vanishing free entropy 2007 Kenley Jung
+ A propagation property of free entropy dimension 2006 Kenley Jung
+ Fractal entropies and dimensions for microstate spaces 2002 Kenley Jung
+ Entropy and Kolmogorov complexity 2016 Nikita Moriakov
+ Topological entropy and the AF core of a graph <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>C</mml:mi><mml:mo>∗</mml:mo></mml:msup></mml:math>-algebra 2009 Ja A Jeong
Gi Hyun Park
+ A Free Entropy Dimension Lemma 2002 Kenley Jung
+ The Dynamical View: Measured Group Theory 2020 Clara Löh